Publications

Results 1–50 of 149

Search results

Jump to search filters

Ab initio calculations of low-energy quasiparticle lifetimes in bilayer graphene

Applied Physics Letters

Spataru, Catalin D.; Leonard, Francois

Motivated by recent experimental results we calculate from first-principles the lifetime of low-energy quasiparticles in bilayer graphene (BLG). Here, we take into account the scattering rate arising from electron-electron interactions within the GW approximation for the electron self-energy and consider several p-type doping levels ranging from 0 to ρ ≈ 2.4 × 1012 holes/cm2. In the undoped case we find that the average inverse lifetime scales linearly with energy away from the charge neutrality point, with values in good agreement with experiments. The decay rate is approximately three times larger than in monolayer graphene, a consequence of the enhanced screening in BLG. In the doped case, the dependence of the inverse lifetime on quasiparticle energy acquires a non-linear component due to the opening of an additional decay channel mediated by acoustic plasmons.

More Details

Neuromorphic Information Processing by Optical Media

Leonard, Francois; Fuller, Elliot J.; Teeter, Corinne M.; Vineyard, Craig M.

Classification of features in a scene typically requires conversion of the incoming photonic field int the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ x 100λ with aperture density λ-2 achieve ~96% testing accuracy on the MNIST dataset, for an optimized distance ~100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.

More Details

Ultra-low Voltage GaN Vacuum Nanoelectronics

2022 Compound Semiconductor Week, CSW 2022

Wang, George T.; Sapkota, Keshab R.; Talin, Albert A.; Leonard, Francois; Gunning, Brendan P.; Vizkelethy, Gyorgy

The III-nitride semiconductors are attractive for on-chip, solid-state vacuum nanoelectronics, having high thermal and chemical stability, low electron affinity, and high breakdown fields. Here we report top-down fabricated, lateral gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with ultra-low turn-on voltages down to ~0.24 V, and stable high field emission currents, tested up to several microamps for single-emitter devices. We present gap-size and pressure dependent studies which provide insights into the design of future nanogap vacuum electron devices. The vacuum nanodiodes also show high resistance to damage from 2.5 MeV proton exposure. Preliminary results on the fabrication and characteristics of lateral GaN nano vacuum transistors will also be presented. The results show promise for a new class of robust, integrated, III-nitride based vacuum nanoelectronics.

More Details

Scanning ultrafast electron microscopy reveals photovoltage dynamics at a deeply buried p-Si/Si O2 interface

Physical Review B

Ellis, S.R.; Bartelt, Norman C.; Leonard, Francois; Celio, K.C.; Fuller, Elliot J.; Hughart, David R.; Garland, D.; Marinella, Matthew; Michael, Joseph R.; Chandler, David; Liao, B.; Talin, Albert A.

The understanding and control of charge carrier interactions with defects at buried insulator/semiconductor interfaces is essential for achieving optimum performance in modern electronics. Here, we report on the use of scanning ultrafast electron microscopy (SUEM) to remotely probe the dynamics of excited carriers at a Si surface buried below a thick thermal oxide. Our measurements illustrate a previously unidentified SUEM contrast mechanism, whereby optical modulation of the space-charge field in the semiconductor modulates the electric field in the thick oxide, thus affecting its secondary electron yield. By analyzing the SUEM contrast as a function of time and laser fluence we demonstrate the diffusion mediated capture of excited carriers by interfacial traps.

More Details

Physics-Based Optical Neuromorphic Classification

Leonard, Francois; Teeter, Corinne M.; Vineyard, Craig M.

Typical approaches to classify scenes from light convert the light field to electrons to perform the computation in the digital electronic domain. This conversion and downstream computational analysis require significant power and time. Diffractive neural networks have recently emerged as unique systems to classify optical fields at lower energy and high speeds. Previous work has shown that a single layer of diffractive metamaterial can achieve high performance on classification tasks. In analogy with electronic neural networks, it is anticipated that multilayer diffractive systems would provide better performance, but the fundamental reasons for the potential improvement have not been established. In this work, we present extensive computational simulations of two - layer diffractive neural networks and show that they can achieve high performance with fewer diffractive features than single layer systems.

More Details

Thermal Infrared Detectors: expanding performance limits using ultrafast electron microscopy

Talin, Albert A.; Ellis, Scott; Bartelt, Norman C.; Leonard, Francois; Perez, Christopher; Celio, Km; Fuller, Elliot J.; Hughart, David R.; Garland, D.; Marinella, Matthew; Michael, Joseph R.; Chandler, David; Young, Steve M.; Smith, Sean; Kumar, Suhas

This project aimed to identify the performance-limiting mechanisms in mid- to far infrared (IR) sensors by probing photogenerated free carrier dynamics in model detector materials using scanning ultrafast electron microscopy (SUEM). SUEM is a recently developed method based on using ultrafast electron pulses in combination with optical excitations in a pump- probe configuration to examine charge dynamics with high spatial and temporal resolution and without the need for microfabrication. Five material systems were examined using SUEM in this project: polycrystalline lead zirconium titanate (a pyroelectric), polycrystalline vanadium dioxide (a bolometric material), GaAs (near IR), InAs (mid IR), and Si/SiO 2 system as a prototypical system for interface charge dynamics. The report provides detailed results for the Si/SiO 2 and the lead zirconium titanate systems.

More Details

Co-Design of Free-Space Metasurface Optical Neuromorphic Classifiers for High Performance

ACS Photonics

Leonard, Francois; Backer, Adam S.; Fuller, Elliot J.; Teeter, Corinne M.; Vineyard, Craig M.

Classification of features in a scene typically requires conversion of the incoming photonic field into the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ × 100λ with an aperture density λ-2 achieve ∼96% testing accuracy on the MNIST data set, for an optimized distance ∼100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.

More Details

Carrier Diffusion Lengths in Continuously Grown and Etched-and-Regrown GaN Pin Diodes

IEEE Electron Device Letters

Celio, K.C.; Armstrong, Andrew A.; Talin, Albert A.; Allerman, A.A.; Crawford, Mary H.; Pickrell, Gregory W.; Leonard, Francois

Advanced GaN power devices are promising for many applications in high power electronics but performance limitations due to material quality in etched-and-regrown junctions prevent their widespread use. Carrier diffusion length is a critical parameter that not only determines device performance but is also a diagnostic of material quality. Here we present the use of electron-beam induced current to measure carrier diffusion lengths in continuously grown and etched-and-regrown GaN pin diodes as models for interfaces in more complex devices. Variations in the quality of the etched-and-regrown junctions are observed and shown to be due to the degradation of the n-type material. We observe an etched-and-regrown junction with properties comparable to a continuously grown junction.

More Details

Nanoscale functionalized superconducting transport channels as photon detectors

Physical Review B

Spataru, Catalin D.; Leonard, Francois

Single-photon detectors have typically consisted of macroscopic materials where both the photon absorption and transduction to an electrical signal happen. Newly proposed designs suggest that large arrays of nanoscale detectors could provide improved performance in addition to decoupling the absorption and transduction processes. Here we study the properties of such a detector consisting of a nanoscale superconducting (SC) transport channel functionalized by a photon absorber. We explore two detection mechanisms based on photoinduced electrostatic gating and magnetic effects. To this end we model the narrow channel as a one-dimensional atomic chain and use a self-consistent Keldysh-Nambu Green's function formalism to describe nonequilibrium effects and SC phenomena. We consider cases where the photon creates electrostatic and magnetic changes in the absorber, as well as devices with strong and weak coupling to the metal leads. Our results indicate that the most promising case is when the SC channel is weakly coupled to the leads and in the presence of a background magnetic field, where photoexcitation of a magnetic molecule can trigger a SC-to-normal transition in the channel that leads to a change in the device current several times larger than in the case of a normal-phase channel device.

More Details

Ultralow Voltage GaN Vacuum Nanodiodes in Air

Nano Letters

Sapkota, Keshab R.; Leonard, Francois; Talin, Albert A.; Gunning, Brendan P.; Kazanowska, Barbara A.; Jones, Kevin S.; Wang, George T.

The III-nitride semiconductors have many attractive properties for field-emission vacuum electronics, including high thermal and chemical stability, low electron affinity, and high breakdown fields. Here, we report top-down fabricated gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with record ultralow turn-on voltages down to ∼0.24 V and stable high field-emission currents, tested up to several microamps for single-emitter devices. We leverage a scalable, top-down GaN nanofabrication method leading to damage-free and smooth surfaces. Gap-dependent and pressure-dependent studies provide new insights into the design of future, integrated nanogap vacuum electron devices. The results show promise for a new class of high-performance and robust, on-chip, III-nitride-based vacuum nanoelectronics operable in air or reduced vacuum.

More Details

Origami Terahertz Detectors Realized by Inkjet Printing of Carbon Nanotube Inks

ACS Applied Nano Materials

Llinas, Juan P.; Hekmaty, Michelle A.; Talin, Albert A.; Leonard, Francois

Terahertz (THz) technology has shown promise for several applications, but limitations in sources and detectors have prevented broader adoption. Existing THz detectors are rigid, planar, and fabricated using complex technology, making it difficult to integrate into systems. Here we demonstrate THz detectors fabricated by inkjet printing on submicrometer thick, ultraflexible substrates. By developing p- and n-type carbon nanotube inks, we achieve optically thick p–n junction and p-type devices, enabling antenna-free pixels for THz imaging. By further designing and folding the printed devices, we realize origami-inspired architectures with improved performance over single devices, achieving a noise-equivalent power of 12 nW/Hz1/2 at room temperature with no voltage bias. Our approach opens avenues for nonplanar, foldable, deployable, insertable, and retractable THz detectors for applications in nondestructive inspection.

More Details

Design of High-Performance Photon-Number-Resolving Photodetectors Based on Coherently Interacting Nanoscale Elements

ACS Photonics

Leonard, Francois; Sarovar, Mohan; Young, Steve M.

A number of applications in basic science and technology would benefit from high-fidelity photon-number-resolving photodetectors. While some recent experimental progress has been made in this direction, the requirements for true photon number resolution are stringent, and no design currently exists that achieves this goal. Here we employ techniques from fundamental quantum optics to demonstrate that detectors composed of subwavelength elements interacting collectively with the photon field can achieve high-performance photon number resolution. We propose a new design that simultaneously achieves photon number resolution, high efficiency, low jitter, low dark counts, and high count rate. We discuss specific systems that satisfy the design requirements, pointing to the important role of nanoscale device elements.

More Details

Topological Quantum Materials for Quantum Computation

Nenoff, Tina M.; Chou, Stanley S.; Dickens, Peter T.; Modine, Normand A.; Yu, Wenlong; Lee, Stephen R.; Sapkota, Keshab R.; Wang, George T.; Wendt, Joel R.; Medlin, Douglas L.; Leonard, Francois; Pan, Wei

Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies.

More Details

Quantum dynamics of single-photon detection using functionalized quantum transport electronic channels

Physical Review Research

Spataru, Catalin D.; Leonard, Francois

Single-photon detectors have historically consisted of macroscopic-sized materials but recent experimental and theoretical progress suggests new approaches based on nanoscale and molecular electronics. Here, we present a theoretical study of photodetection in a system composed of a quantum electronic transport channel functionalized by a photon absorber. Notably, the photon field, absorption process, transduction mechanism, and measurement process are all treated as part of one fully coupled quantum system, with explicit interactions. Using nonequilibrium, time-dependent quantum transport simulations, we reveal the unique temporal signatures of the single-photon detection process, and show that the system can be described using optical Bloch equations, with a new nonlinearity as a consequence of time-dependent detuning caused by the back-action from the transport channel via the dynamical Stark effect. We compute the photodetector signal-to-noise ratio and demonstrate that single-photon detection at high count rate is possible for realistic parameters by exploiting a unique nonequilibrium control of back-action.

More Details

Visible- and solar-blind photodetectors using AlGaN high electron mobility transistors with a nanodot-based floating gate

Photonics Research

Armstrong, Andrew A.; Klein, Brianna A.; Allerman, A.A.; Baca, Albert G.; Crawford, Mary H.; Podkaminer, Jacob; Perez, Carlos; Siegal, Michael P.; Douglas, Erica A.; Abate, Vincent M.; Leonard, Francois

AlGaN-channel high electron mobility transistors (HEMTs) were operated as visible- and solar-blind photodetectors by using GaN nanodots as an optically active floating gate. The effect of the floating gate was large enough to switch an HEMT from the off-state in the dark to an on-state under illumination. This opto-electronic response achieved responsivity > 108 A/W at room temperature while allowing HEMTs to be electrically biased in the offstate for low dark current and low DC power dissipation. The influence of GaN nanodot distance from the HEMT channel on the dynamic range of the photodetector was investigated, along with the responsivity and temporal response of the floating gate HEMT as a function of optical intensity. The absorption threshold was shown to be controlled by the AlN mole fraction of the HEMT channel layer, thus enabling the same device design to be tuned for either visible- or solar-blind detection.

More Details

General modeling framework for quantum photodetectors

Physical Review A

Leonard, Francois; Young, Steve M.; Sarovar, Mohan

Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific disciplines and enable new types of applications. However, it is still unclear what is possible in terms of ultimate performance and what properties are needed for a photodetector to achieve such performance. Here, we present a general modeling framework for photodetectors whereby the photon field, the absorption process, and the amplification process are all treated as one coupled quantum system. The formalism naturally handles field states with single or multiple photons as well as a variety of detector configurations and includes a mathematical definition of ideal photodetector performance. The framework reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance metrics, providing guidance for optimization and design.

More Details

Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films before and after Reaction with TCNQ

ACS Applied Materials and Interfaces

Thurmer, Konrad; Stavila, Vitalie; Friddle, Raymond; Leonard, Francois; Allendorf, Mark; Talin, Albert A.; Schneider, Christian; Fischer, Roland A.

HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal-organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10-11 S/cm for the parent Cu3BTC2 material to 10-1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.

More Details

Room-Temperature Phototransistor with Negative Photoresponsivity of 108 A W-1 Using Fullerene-Sensitized Aligned Carbon Nanotubes

Small

Leonard, Francois; Bergemann, Kevin

Detection of low intensity light down to a few photons requires photodetectors with high gain. In this paper, a new photodetector is reported based on C60-sensitized aligned carbon nanotube (CNT) transistors with an extremely high responsivity of 108 A W-1 (gain > 108) in the ultraviolet and visible range, and 720 A W-1 (gain = 940) in the infrared range. In contrast to most sensitized phototransistors that operate on the photogating effect, the new photodetector operates on the modulation of the electrons scattering in the CNTs, leading to negative photoconductivity. Comparison with similar photodetectors using random CNT networks shows the benefit of using aligned CNTs. Finally, at room temperature, the aligned CNT photodetectors are demonstrated to detect a few tens of photons per CNT.

More Details

Quantum Nanofabrication: Mechanisms and Fundamental Limits

Wang, George T.; Coltrin, Michael E.; Lu, Ping; Miller, Philip R.; Leung, Benjamin; Xiao, Xiaoyin; Sapkota, Keshab R.; Leonard, Francois; Bran Anleu, Gabriela A.; Koleske, Daniel D.; Tsao, Jeffrey Y.; Balakrishnan, Ganesh; Addamane, Sadhvikas; Nelson, Jeffrey

Quantum-size-controlled photoelectrochemical (QSC-PEC) etching, which uses quantum confinement effects to control size, can potentially enable the fabrication of epitaxial quantum nanostructures with unprecedented accuracy and precision across a wide range of materials systems. However, many open questions remain about this new technique, including its limitations and broader applicability. In this project, using an integrated experimental and theoretical modeling approach, we pursue a greater understanding of the time-dependent QSC-PEC etch process and to uncover the underlying mechanisms that determine its ultimate accuracy and precision. We also seek to broaden our understanding of the scope of its ultimate applicability in emerging nanostructures and nanodevices.

More Details
Results 1–50 of 149
Results 1–50 of 149