Z-Petawatt Full-Aperture Upgrade
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
At the Z Facility at Sandia National Laboratories, the magnetized liner inertial fusion (MagLIF) program aims to study the inertial confinement fusion in deuterium-filled gas cells by implementing a three-step process on the fuel: premagnetization, laser preheat, and Z-pinch compression. In the laser preheat stage, the Z-Beamlet laser focuses through a thin polyimide window to enter the gas cell and heat the fusion fuel. However, it is known that the presence of the few μm thick window reduces the amount of laser energy that enters the gas and causes window material to mix into the fuel. These effects are detrimental to achieving fusion; therefore, a windowless target is desired. The Lasergate concept is designed to accomplish this by "cutting"the window and allowing the interior gas pressure to push the window material out of the beam path just before the heating laser arrives. In this work, we present the proof-of-principle experiments to evaluate a laser-cutting approach to Lasergate and explore the subsequent window and gas dynamics. Further, an experimental comparison of gas preheat with and without Lasergate gives clear indications of an energy deposition advantage using the Lasergate concept, as well as other observed and hypothesized benefits. While Lasergate was conceived with MagLIF in mind, the method is applicable to any laser or diagnostic application requiring direct line of sight to the interior of gas cell targets.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Dichroic coatings have been developed for high transmission at 527 nm and high reflection at 1054 nm for laser operations in the nanosecond pulse regime. The coatings consist of HfO2 and SiO2 layers deposited with e-beam evaporation, and laser-induced damage thresholds as high as 12.5 J/cm2 were measured at 532 nm with 3.5 ns pulses (22.5 degrees angle of incidence, in S-polarization). However, laser damage measurements at the single wavelength of 532 nm do not adequately characterize the laser damage resistance of these coatings, since they were designed to operate at dual wavelengths simultaneously. This became apparent after one of the coatings damaged prematurely at a lower fluence in the beam train, which inspired further investigations. To gain a more complete understanding of the laser damage resistance, results of a dual-wavelength laser damage test performed at both 532 nm and 1064 nm are presented.
Proceedings of SPIE - The International Society for Optical Engineering
The laser damage thresholds of optical coatings can degrade over time due to a variety of factors, including contamination and aging. Optical coatings deposited using electron beam evaporation are particularly susceptible to degradation due to their porous structure. In a previous study, the laser damage thresholds of optical coatings were reduced by roughly a factor of two from 2013 to 2017. The coatings in question were high reflectors for 1054 nm that contained SiO2 and HfO2 and/or TiO2 layers, and they were stored in sealed PETG containers in a class 100 cleanroom with temperature control. At the time, it was not certain whether contamination or thin film aging effects were responsible for the reduced laser damage thresholds. Therefore, to better understand the role of contamination, the coatings were recleaned and the laser damage thresholds were measured again in 2018. Here, the results indicate that contamination played the most dominant role in reducing the laser damage thresholds of these optical coatings, even though they were stored in an environment that was presumed to be clean.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
We report on progress for increasing the laser-induced damage threshold of dichroic beam combiner coatings for high transmission at 527 nm and high reflection at 1054 nm (22.5° angle of incidence, S-polarization). The initial coating consisted of HfO2 and SiO2 layers deposited with electron beam evaporation, and the laser-induced damage threshold was 7 J/cm2 at 532 nm with 3.5 ns pulses. This study introduces different coating strategies that were utilized to increase the laser damage threshold of this coating to 12.5 J/cm2.
Proceedings of SPIE - The International Society for Optical Engineering
The laser damage thresholds of optical coatings can degrade over time due to a variety of factors, including contamination and aging. Optical coatings deposited using electron beam evaporation are particularly susceptible to degradation due to their porous structure. In a previous study, the laser damage thresholds of optical coatings were reduced by roughly a factor of two from 2013 to 2017. The coatings in question were high reflectors for 1054 nm that contained SiO 2 and HfO 2 and/or TiO 2 layers, and they were stored in sealed PETG containers in a class 100 cleanroom with temperature control. At the time, it was not certain whether contamination or thin film aging effects were responsible for the reduced laser damage thresholds. Therefore, to better understand the role of contamination, the coatings were recleaned and the laser damage thresholds were measured again in 2018. The results indicate that contamination played the most dominant role in reducing the laser damage thresholds of these optical coatings, even though they were stored in an environment that was presumed to be clean.
Proceedings of SPIE - The International Society for Optical Engineering
The laser damage thresholds of optical coatings can degrade over time due to a variety of factors, including contamination and aging. Optical coatings deposited using electron beam evaporation are particularly susceptible to degradation due to their porous structure. In a previous study, the laser damage thresholds of optical coatings were reduced by roughly a factor of two from 2013 to 2017. The coatings in question were high reflectors for 1054 nm that contained SiO 2 and HfO 2 and/or TiO 2 layers, and they were stored in sealed PETG containers in a class 100 cleanroom with temperature control. At the time, it was not certain whether contamination or thin film aging effects were responsible for the reduced laser damage thresholds. Therefore, to better understand the role of contamination, the coatings were recleaned and the laser damage thresholds were measured again in 2018. The results indicate that contamination played the most dominant role in reducing the laser damage thresholds of these optical coatings, even though they were stored in an environment that was presumed to be clean.
Abstract not provided.
Optical Engineering
When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairs were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO2 and SiO2 layers for high reflection at 1054 nm at 45 deg incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating's high laser-induced damage threshold (LIDT) of 64.0 J/cm2. The repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 to 61.0 J/cm2.
Proceedings of SPIE - The International Society for Optical Engineering
We designed and produced optical coatings for broad bandwidth high reflection (BBHR) of femtosecond (fs) pulses for high energy petawatt (PW) lasers. These BBHR coatings consist of TiO2/SiO2 and/or HfO2/SiO2 layer pairs formed by reactive E-beam evaporation with ion-assisted deposition in Sandia's Large Optics Coating Facility. Specifications for the HR band and center wavelength of the coatings are for 45° angle of incidence (AOI), P polarization (Ppol), with use of the coatings at different AOIs and in humid or dry/vacuum environments providing corresponding different HR center wavelengths and spectral widths. These coatings must provide high laserinduced damage threshold (LIDT) to handle the PW fluences, and also low group delay dispersion (GDD) to reflect fs pulses without distortion of their temporal profiles. We present results of LIDT and GDD measurements on these coatings. The LIDT tests are at 45° or 65° AOI, Ppol in a dry environment with 100 fs laser pulses of 800 nm line center for BBHR coatings whose HR band line centers are near 800 nm. A GDD measurement for one of the BBHR coatings whose design HR center wavelength is near 900 nm shows reasonably low and smoothly varying GDD over the HR band. Our investigations include BBHR coatings designed for 45° AOI, Ppol with HR bands centered at 800 nm in dry or vacuum environments, and featuring three options: all TiO2/SiO2 layer pairs; all HfO2/SiO2 layer pairs; and TiO2/SiO2 inner layer pairs with 5 outer HfO2/SiO2 layer pairs. LIDT tests of these coatings with 100 fs, 800 nm line center pulses in their use environment show that replacing a few outer TiO2 layers of TiO2/SiO2 BBHR coatings with HfO2 leads to ∼ 80% higher LIDT with only minor loss of HR bandwidth.
Proceedings of SPIE - The International Society for Optical Engineering
Optical coatings deposited using electron beam evaporation are subject to aging effects that change the spectral characteristics of the optical coating. The aim of this study was to determine whether aging effects can also negatively impact the laser damage resistance of an optical coating. Maintaining high resistance to laser damage is particularly important for the performance of high fluence laser systems. In 2013, we deposited different high reflection coatings for 1054 nm containing HfO2/TiO2/SiO2 layers. For this study, we re-measured the laser damage thresholds of these coatings at 3.5 ns to determine if aging effects cause the laser damage threshold to decline, and to compare whether HfO2 or TiO2 is superior in terms of long-term laser damage resistance.
Proceedings of SPIE - The International Society for Optical Engineering
Optical coatings deposited using electron beam evaporation are subject to aging effects that change the spectral characteristics of the optical coating. The aim of this study was to determine whether aging effects can also negatively impact the laser damage resistance of an optical coating. Maintaining high resistance to laser damage is particularly important for the performance of high fluence laser systems. In 2013, we deposited different high reflection coatings for 1054 nm containing HfO2/TiO2/SiO2 layers. For this study, we re-measured the laser damage thresholds of these coatings at 3.5 ns to determine if aging effects cause the laser damage threshold to decline, and to compare whether HfO2 or TiO2 is superior in terms of long-term laser damage resistance.
Abstract not provided.
Optical Engineering
When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairs were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO2 and SiO2 layers for high reflection at 1054 nm at 45 deg incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating's high laser-induced damage threshold (LIDT) of 64.0 J/cm2. The repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 to 61.0 J/cm2.