EFFECTS OF EXTREME HYDROGEN ENVIRONMENTS ON THE FRACTURE AND FATIGUE BEHAVIOR OF ADDITIVELY MANUFACTURED STAINLESS STEELS
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Type 2 high-pressure hydrogen vessels for storage at hydrogen refueling stations are designed assuming a predefined operational pressure cycle and targeted autofrettage conditions. However, the resulting finite life depends significantly on variables associated with the autofrettage process and the pressure cycles actually realized during service, which many times are not to the full range of the design. Clear guidance for cycle counting is lacking, therefore industry often defaults to counting every repressurization as a full range pressure cycle, which is an overly conservative approach. In-service pressure cycles used to predict the growth of cracks in operational pressure vessels results in significantly longer life, since most in-service pressure cycles are only a fraction of the full design pressure range. Fatigue crack growth rates can vary widely for a given pressure range depending on the details of the residual strains imparted during the autofrettage process because of their influence on crack driving forces. Small changes in variables associated with the autofrettage process, e.g., the target autofrettage overburden pressure, can result in large changes in the residual stress profile leading to possibly degraded fatigue life. In this paper, computational simulation was used for sensitivity studies to evaluate the effect of both operating conditions and autofrettage conditions on fatigue life for Type 2 highpressure hydrogen vessels. The analysis in this paper explores these sensitivities, and the results are used to provide guidance on cycle counting. In particular, we identify the pressure cycle ranges that can be ignored over the life of the vessel as having negligible effect on fatigue life. This study also examines the sensitivity of design life to the autofrettage process and the impact on life if the targeted residual strain is not achieved during manufacturing.
Abstract not provided.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
High strength austenite-ferrite duplex stainless steels are a potential alternative to austenitic stainless steels for components in hydrogen gas storage systems. Since these components experience cyclic loading from frequent pressurization and depressurization, the effect of hydrogen on the fatigue behavior of duplex stainless steel must be understood. To determine the influence of hydrogen on fatigue crack initiation and fatigue life of a 255 super duplex stainless steel, circumferentially notched tensile (CNT) specimens were fatigue tested in the as-received condition in air, with pre-charged internal hydrogen in air, and in the as-received condition in high pressure hydrogen gas. The direct current potential difference (DCPD) method was used to detect crack initiation so that S-N curves could be produced for both (i) cycles to crack initiation and (ii) cycles to failure. An electropolished CNT specimen was also cycled in the as-received and hydrogen pre-charged conditions but interrupted just after crack initiation. The microstructural locations of small fatigue cracks were then identified with scanning electron microscopy and electron backscatter diffraction (EBSD). High pressure hydrogen gas and pre-charged hydrogen decreased the fatigue life of 255 duplex stainless steel by a nearly identical amount. The effects of hydrogen on fatigue crack initiation and fatigue life of 255 duplex stainless steel are discussed and compared to austenitic stainless steels.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Decarbonizing natural gas networks is a challenging enterprise. Replacing natural gas with renewable hydrogen is one option under global consideration to decarbonize heating, power and residential uses of natural gas. Hydrogen is known to degrade fatigue and fracture properties of structural steels, including pipeline steels. In this study, we describe environmental testing strategies aimed at generating baseline fatigue and fracture trends with efficient use of testing resources. For example, by controlling the stress intensity factor (K) in both K-increasing and K-decreasing modes, fatigue crack growth can be measured for multiple load ratios with a single specimen. Additionally, tests can be designed such that fracture tests can be performed at the conclusion of the fatigue crack growth test, further reducing the resources needed to evaluate the fracture mechanics parameters utilized in design. These testing strategies are employed to establish the fatigue crack growth behavior and fracture resistance of API grade steels in gaseous hydrogen environments. In particular, we explore the effects of load ratio and hydrogen partial pressure on the baseline fatigue and fracture trends of line pipe steels in gaseous hydrogen. These data are then used to test the applicability of a simple, universal fatigue crack growth model that accounts for both load ratio and hydrogen partial pressure. The appropriateness of this model for use as an upper bound fatigue crack growth is discussed.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Type 2 high-pressure hydrogen vessels for storage at hydrogen refueling stations are designed assuming a predefined operational pressure cycle and targeted autofrettage conditions. However, the resulting finite life depends significantly on variables associated with the autofrettage process and the pressure cycles actually realized during service, which many times are not to the full range of the design. Clear guidance for cycle counting is lacking, therefore industry often defaults to counting every repressurization as a full range pressure cycle, which is an overly conservative approach. In-service pressure cycles used to predict the growth of cracks in operational pressure vessels results in significantly longer life, since most in-service pressure cycles are only a fraction of the full design pressure range. Fatigue crack growth rates can vary widely for a given pressure range depending on the details of the residual strains imparted during the autofrettage process because of their influence on crack driving forces. Small changes in variables associated with the autofrettage process, e.g., the target autofrettage overburden pressure, can result in large changes in the residual stress profile leading to possibly degraded fatigue life. In this paper, computational simulation was used for sensitivity studies to evaluate the effect of both operating conditions and autofrettage conditions on fatigue life for Type 2 highpressure hydrogen vessels. The analysis in this paper explores these sensitivities, and the results are used to provide guidance on cycle counting. In particular, we identify the pressure cycle ranges that can be ignored over the life of the vessel as having negligible effect on fatigue life. This study also examines the sensitivity of design life to the autofrettage process and the impact on life if the targeted residual strain is not achieved during manufacturing.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
High pressure hydrogen storage vessels are frequently retired upon reaching their designed number of pressure cycles, even in cases where the in-use pressure cycles are significantly less severe than the design pressure cycle. One method for extending the life of hydrogen vessels is recertification through non-destructive evaluation (NDE); however, NDE techniques are frequently evaluated with machined defects in test samples rather than fatigue cracks which occur during pressure cycling and may be more difficult to detect. In this paper, 50 mm wide ring sections (called C-rings, since they represent slightly more than half the circumference) were extracted from pressure vessels and mechanically cycled to establish fatigue cracks. Sub-millimeter starter notches were machined, via plunge electrical discharge machining (EDM), to control the location of crack initiation. Crack growth was monitored via direct current potential difference (DCPD) and backface strain gauges, both of which were shown to be good indicators for crack propagation. The C-ring geometry and fatigue crack growth were modeled to demonstrate the ability to monitor/control the crack length and area, which can be used to develop calibration samples of varying crack depth for NDE techniques. Additionally, this sample is intended to evaluate the influence of residual stresses on the sensitivity of NDE techniques, such as the design stresses in autofrettaged vessels.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Despite their susceptibility to hydrogen-assisted fracture, ferritic steels make up a large portion of the hydrogen infrastructure. It is impractical and too costly to build large scale components such as pipelines and pressure vessels out of more hydrogen-resistant materials such as austenitic stainless steels. Therefore, it is necessary to understand the fracture behavior of ferritic steels in high-pressure hydrogen environments to manage design margins and reduce costs. Quenched and tempered (Q&T) martensite is the predominant microstructure of high-pressure hydrogen pressure vessels, and higher strength grades of this steel type are more susceptible to hydrogen degradation than lower strength grades. In this study, a single heat of 4340 alloy was heat treated to develop alternative microstructures for evaluation of fracture resistance in hydrogen gas. Fracture tests of several microstructures, such as lower bainite and upper bainite with similar strength to the baseline Q&T martensite, were tested at 21 and 105 MPa H2. Despite a higher MnS inclusion content in the tested 4340 alloy which reduced the fracture toughness in air, the fracture behavior in hydrogen gas fit a similar trend to other previously tested Q&T martensitic steels. The lower bainite microstructure performed similar to the Q&T martensite, whereas the upper bainite microstructure performed slightly worse. In this paper, we extend the range of high-strength microstructures evaluated for hydrogen-assisted fracture beyond conventional Q&T martensitic steels.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Numerous projects are looking into distributing blends of natural gas and different amounts of gaseous hydrogen through the existing natural gas distribution system, which is widely composed of medium density polyethylene (MDPE) line pipes. The mechanical behavior of MDPE with hydrogen is not well understood; therefore, the effect of gaseous H2 on the mechanical properties of MDPE needs to be examined. In the current study, we investigate the effects of gaseous H2 on fatigue life and fracture resistance of MDPE in the presence of 3.4 MPa gaseous H2. Fatigue life tests were also conducted at a pressure of 21 MPa to investigate the effect of gas pressure on the fatigue behavior of MDPE. Results showed that the presence of gaseous H2 did not degrade the fatigue life nor the fracture resistance of MDPE. Additionally, based on the value of fracture resistance calculated, a failure assessment diagram was constructed to determine the applicability of using MDPE pipeline for distribution of gaseous H2. Even in the presence of a large internal crack, the failure assessment evaluation indicated that the MDPE pipes lie within the safe region under typical service conditions of natural gas distribution pipeline system.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.