Publications

Results 1–50 of 86

Search results

Jump to search filters

Al-Rich AlGaN Transistors with Regrown p-AlGaN Gate Layers and Ohmic Contacts

Advanced Materials Interfaces

Klein, Brianna A.; Allerman, A.A.; Armstrong, Andrew A.; Rosprim, Mary R.; Tyznik, Colin

Epitaxial regrowth processes are presented for achieving Al-rich aluminum gallium nitride (AlGaN) high electron mobility transistor (HEMTs) with p-type gates with large, positive threshold voltage for enhancement mode operation and low resistance Ohmic contacts. Utilizing a deep gate recess etch into the channel and an epitaxial regrown p-AlGaN gate structure, an Al0.85Ga0.15N barrier/Al0.50Ga0.50N channel HEMT with a large positive threshold voltage (VTH = +3.5 V) and negligible gate leakage is demonstrated. Epitaxial regrowth of AlGaN avoids the use of gate insulators which can suffer from charge trapping effects observed in typical dielectric layers deposited on AlGaN. Low resistance Ohmic contacts (minimum specific contact resistance = 4 × 10−6 Ω cm2, average = 1.8 × 10−4 Ω cm2) are demonstrated in an Al0.85Ga0.15N barrier/Al0.68Ga0.32N channel HEMT by employing epitaxial regrowth of a heavily doped, n-type, reverse compositionally graded epitaxial structure. The combination of low-leakage, large positive threshold p-gates and low resistance Ohmic contacts by the described regrowth processes provide a pathway to realizing high-current, enhancement-mode, Al-rich AlGaN-based ultra-wide bandgap transistors.

More Details

Al-rich AlGaN high electron mobility transistor gate metallization study up to 600 °C in air

Applied Physics Letters

Klein, Brianna A.; Allerman, A.A.; Armstrong, Andrew A.

We report a comparative study of three rectifying gate metals, W, Pd, and Pt/Au, on ultrawide bandgap Al0.86Ga0.14N barrier/Al0.7Ga0.3N channel high electron mobility transistors for use in extreme temperatures. The transistors were electrically characterized from 30 to 600 °C in air. Of the three gate metals, the Pt/Au stack exhibited the smallest change in threshold voltage (0.15 V, or 9% change between the 30 and 600 °C values, and a maximum change of 42%), the highest on/off current ratio (1.5 × 106) at 600 °C, and a modest forward gate leakage current (0.39 mA/mm for a 3 V gate bias) at 600 °C. These favorable results showcase AlGaN channel high electron mobility transistors' ability to operate in extreme temperature environments.

More Details

2.5D HI Packaging of the Power Converter using TSV interposer

Chung, Hyunim; Young, Andrew I.; Klein, Brianna A.; Mcdonough, Matthew; Neely, Jason C.

Abstract: Advantages of the 2.5D HI (Heterogeneous Integration) electronics packaging of the power electronics compared to PCB packaging will be presented. Current 2.5D packaging effort using TSV (Through Silicon Via) will be presented in terms of fabrication, microstructural analysis, reliability, and thermal simulation.

More Details

AlGaN High Electron Mobility Transistor for High-Temperature Logic

Journal of Microelectronics and Electronic Packaging

Klein, Brianna A.; Allerman, A.A.; Baca, Albert G.; Nordquist, Christopher D.; Armstrong, Andrew A.; Van Heukelom, Michael; Rice, Anthony; Patel, Victor J.; Rosprim, Mary R.; Caravello, Lisa A.; Foulk, James W.; Pipkin, Jennifer R.; Abate, Vincent M.; Kaplar, Robert

Here we report on AlGaN high electron mobility transistor (HEMT)-based logic development, using combined enhancement- and depletion-mode transistors to fabricate inverters with operation from room temperature up to 500°C. Our development approach included: (a) characterizing temperature-dependent carrier transport for different AlGaN HEMT heterostructures, (b) developing a suitable gate metal scheme for use in high temperatures, and (c) over-temperature testing of discrete devices and inverters. Hall mobility data (from 30°C to 500°C) revealed the reference GaN-channel HEMT experienced a 6.9x reduction in mobility, whereas the AlGaN channel HEMTs experienced about a 3.1x reduction. Furthermore, a greater aluminum contrast between the barrier and channel enabled higher carrier densities in the two-dimensional electron gas for all temperatures. The combination of reduced variation in mobility with temperature and high sheet carrier concentration showed that an Al-rich AlGaN-channel HEMT with a high barrier-to-channel aluminum contrast is the best option for an extreme temperature HEMT design. Three gate metal stacks were selected for low resistivity, high melting point, low thermal expansion coefficient, and high expected barrier height. The impact of thermal cycling was examined through electrical characterization of samples measured before and after rapid thermal anneal. The 200-nm tungsten gate metallization was the top performer with minimal reduction in drain current, a slightly positive threshold voltage shift, and about an order of magnitude advantage over the other gates in on-to-off current ratio. After incorporating the tungsten gate metal stack in device fabrication, characterization of transistors and inverters from room temperature up to 500°C was performed. The enhancement-mode (e-mode) devices’ resistance started increasing at about 200°C, resulting in drain current degradation. This phenomenon was not observed in depletion-mode (d-mode) devices but highlights a challenge for inverters in an e-mode driver and d-mode load configuration.

More Details

AlGaN High Electron Mobility Transistor for High Temperature Logic

Advancing Microelectronics

Klein, Brianna A.; Allerman, A.A.; Baca, A.G.; Nordquist, Christopher D.; Armstrong, Andrew A.; Van Heukelom, Michael; Rice, Anthony; Patel, Victor J.; Rosprim, Mary R.; Caravello, Lisa A.; Foulk, James W.; Pipkin, Jennifer R.; Abate, Christopher; Kaplar, Robert

We report on AlGaN HEMT-based logic development, using combined enhancement- and depletion-mode transistors to fabricate inverters with operation from room temperature up to 500°C. Our development approach included: (a) characterizing temperature dependent carrier transport for different AlGaN HEMT heterostructures, (b) developing a suitable gate metal scheme for use in high temperatures, and (c) over-temperature testing of discrete devices and inverters. Hall mobility data revealed the GaN-channel HEMT experienced a 6.9× reduction in mobility, whereas the AlGaN channel HEMTs experienced about a 3.1x reduction. Furthermore, a greater aluminum contrast between the barrier and channel enabled higher carrier densities in the two-dimensional electron gas for all temperatures. The combination of reduced variation in mobility with temperature and high sheet carrier concentration showed that an Al-rich AlGaN-channel HEMT with a high barrier-to-channel aluminum contrast is the best option for an extreme temperature HEMT design. Three gate metal stacks were selected for low resistivity, high melting point, low thermal expansion coefficient, and high expected barrier height. The impact of thermal cycling was examined through electrical characterization of samples measured before and after rapid thermal anneal. The 200 nm tungsten gate metallization was the top performer with minimal reduction in drain current, a slightly positive threshold voltage shift, and about an order of magnitude advantage over the other gates in on-to-off current ratio. After incorporating the tungsten gate metal stack in device fabrication, characterization of transistors and inverters from room temperature up to 500°C was performed. The enhancement-mode (e-mode) devices’ resistance started increasing at about 200°C, resulting in drain current degradation. This phenomenon was not observed in depletion-mode (d-mode) devices but highlights a challenge for inverters in an e-mode driver and d-mode load configuration.

More Details

Thermal Conductivity of β-Phase Ga2O3 and (AlxGa1–x)2O3 Heteroepitaxial Thin Films

ACS Applied Materials and Interfaces

Klein, Brianna A.; Song, Yiwen; Ranga, Praneeth; Zhang, Yingying; Feng, Zixuan; Huang, Hsien-Lien; Santia, Marco D.; Badescu, Stefan C.; Gonzalez-Valle, C.U.; Perez, Carlos; Ferri, Kevin; Lavelle, Robert M.; Snyder, David W.; Deitz, Julia I.; Baca, Albert G.; Maria, Jon-Paul; Ramos-Alvarado, Bladimir; Hwang, Jinwoo; Zhao, Hongping; Wang, Xiaojia; Krishnamoorthy, Sriram; Foley, Brian M.; Choi, Sukwon

Heteroepitaxy of β-phase gallium oxide (β-Ga2O3) thin films on foreign substrates shows promise for the development of next-generation deep ultraviolet solar blind photodetectors and power electronic devices. In this work, the influences of the film thickness and crystallinity on the thermal conductivity of ($\bar{2}01$)-oriented β-Ga2O3 heteroepitaxial thin films were investigated. Unintentionally doped β-Ga2O3 thin films were grown on c-plane sapphire substrates with off-axis angles of 0° and 6° toward $\langle$$11\bar{2}0$$\rangle$ via metal–organic vapor phase epitaxy (MOVPE) and low-pressure chemical vapor deposition. The surface morphology and crystal quality of the β-Ga2O3 thin films were characterized using scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. The thermal conductivities of the β-Ga2O3 films were measured via time-domain thermoreflectance. The interface quality was studied using scanning transmission electron microscopy. The measured thermal conductivities of the submicron-thick β-Ga2O3 thin films were relatively low as compared to the intrinsic bulk value. The measured thin film thermal conductivities were compared with the Debye–Callaway model incorporating phononic parameters derived from first-principles calculations. The comparison suggests that the reduction in the thin film thermal conductivity can be partially attributed to the enhanced phonon-boundary scattering when the film thickness decreases. They were found to be a strong function of not only the layer thickness but also the film quality, resulting from growth on substrates with different offcut angles. Growth of β-Ga2O3 films on 6° offcut sapphire substrates was found to result in higher crystallinity and thermal conductivity than films grown on on-axis c-plane sapphire. However, the β-Ga2O3 films grown on 6° offcut sapphire exhibit a lower thermal boundary conductance at the β-Ga2O3/sapphire heterointerface. In addition, the thermal conductivity of MOVPE-grown ($\bar{2}01$)-oriented β-(AlxGa1–x)2O3 thin films with Al compositions ranging from 2% to 43% was characterized. Because of phonon-alloy disorder scattering, the β-(AlxGa1–x)2O3 films exhibit lower thermal conductivities (2.8–4.7 W/m∙K) than the β-Ga2O3 thin films. The dominance of the alloy disorder scattering in β-(AlxGa1–x)2O3 is further evidenced by the weak temperature dependence of the thermal conductivity. This work provides fundamental insight into the physical interactions that govern phonon transport within heteroepitaxially grown β-phase Ga2O3 and (AlxGa1–x)2O3 thin films and lays the groundwork for the thermal modeling and design of β-Ga2O3 electronic and optoelectronic devices.

More Details

AlGaN High Electron Mobility Transistor for Power Switches and High Temperature Logic

Klein, Brianna A.; Armstrong, Andrew A.; Allerman, A.A.; Nordquist, Christopher D.; Neely, Jason C.; Reza, Shahed; Douglas, Erica A.; Van Heukelom, Michael; Rice, Anthony; Patel, Victor J.; Matins, Benjamin; Fortune, Torben; Rosprim, Mary R.; Caravello, Lisa A.; Foulk, James W.; Pipkin, Jennifer R.; Abate, Vincent M.; Kaplar, Robert

Abstract not provided.

Ultra-Wide-Bandgap Semiconductors: Challenges and Opportunities (invited)

Kaplar, Robert; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Pickrell, Gregory W.; Dickerson, Jeramy; Flicker, Jack D.; Neely, Jason C.; Paisley, Elizabeth; Baca, Albert; Klein, Brianna A.; Douglas, Erica A.; Reza, Shahed; Binder, Andrew; Yates, Luke; Slobodyan, Oleksiy; Sharps, Paul; Simmons, Jerry; Tsao, Jeffrey Y.; Hollis, Mark; Johnson, Noble; Jones, Ken; Pavlidis, Dimitris; Goretta, Ken; Nemanich, Bob; Goodnick, Steve; Chowdhury, Srabanti

Abstract not provided.

High-Al-content heterostructures and devices

Semiconductors and Semimetals

Kaplar, Robert; Baca, Albert G.; Douglas, Erica A.; Klein, Brianna A.; Allerman, A.A.; Crawford, Mary H.; Reza, Shahed

Ultra-wide-bandgap aluminum gallium nitride (AlGaN) possesses several material properties that make it attractive for use in a variety of applications. This chapter focuses on power switching and radio-frequency (RF) devices based on Al-rich AlGaN heterostructures. The relevant figures of merit for both power switching and RF devices are discussed as motivation for the use of AlGaN heterostructures in such applications. The key physical parameters impacting these figures of merit include critical electric field, channel mobility, channel carrier density, and carrier saturation velocity, and the factors influencing these and the trade-offs between them are discussed. Surveys of both power switching and RF devices are given and their performance is described including in special operating regimes such as at high temperatures. Challenges to be overcome, such as the formation of low-resistivity Ohmic contacts, are presented. Finally, an overview of processing-related challenges, especially related to surfaces and interfaces, concludes the chapter.

More Details

Device-Level Multidimensional Thermal Dynamics with Implications for Current and Future Wide Bandgap Electronics

Journal of Electronic Packaging

Lundh, James S.; Song, Yiwen; Chatterjee, Bikramjit; Baca, Albert G.; Kaplar, Robert; Allerman, A.A.; Armstrong, Andrew A.; Klein, Brianna A.; Kim, Hyungtak; Choi, Sukwon

Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns.

More Details

High temperature operation to 500 °c of AlGaN graded polarization-doped field-effect transistors

Journal of Vacuum Science and Technology B

Carey, Patrick H.; Ren, Fan; Armstrong, Andrew A.; Klein, Brianna A.; Allerman, A.A.; Douglas, Erica A.; Baca, Albert G.; Pearton, Stephen J.

AlGaN polarization-doped field-effect transistors were characterized by DC and pulsed measurements from room temperature to 500 °C in ambient. DC current-voltage characteristics demonstrated only a 70% reduction in on-state current from 25 to 500 °C and full gate modulation, regardless of the operating temperature. Near ideal gate lag measurement was realized across the temperature range that is indicative of a high-quality substrate and sufficient surface passivation. The ability for operation at high temperature is enabled by the high Schottky barrier height from the Ni/Au gate contact, with values of 2.05 and 2.76 eV at 25 and 500 °C, respectively. The high barrier height due to the insulatorlike aluminum nitride layer leads to an ION/IOFF ratio of 1.5 × 109 and 6 × 103 at room temperature and 500 °C, respectively. Transmission electron microscopy was used to confirm the stability of the heterostructure even after an extended high-temperature operation with only minor interdiffusion of the Ni/Au Schottky contact. The use of refractory metals in all contacts will be key to ensure a stable extended high-temperature operation.

More Details

Al-rich AlGaN based transistors

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Baca, Albert G.; Armstrong, Andrew A.; Klein, Brianna A.; Allerman, A.A.; Douglas, Erica A.; Kaplar, Robert J.

Research results for AlGaN-channel transistors are reviewed as they have progressed from low Al-content and long-channel devices to Al-rich and short-channel RF devices. Figure of merit (FOM) analysis shows encouraging comparisons relative to today's state-of-the-art GaN devices for high Al-content and elevated temperatures. Critical electric field (EC), which fuels the AlGaN transistor FOM for high Al-composition, is not measured directly, but average gate-drain electric field at breakdown is substantially better in multiple reported AlGaN-channel devices compared to GaN. Challenges for AlGaN include the constraints arising from relatively low room temperature mobility dominated by ternary alloy scattering and the difficulty of making low-resistivity Ohmic contacts to high Al-content materials. Nevertheless, considerable progress has been made recently in the formation of low-resistivity Ohmic contacts to Al-rich AlGaN by using reverse compositional grading in the semiconductor, whereby a contact to a lower-Al alloy (or even to GaN) is made. Specific contact resistivity (ρc) approaching ρc ∼2 × 10-6ωcm2 to AlGaN devices with 70% Al-content in the channel has been reported. Along with scaling of the channel length and tailoring of the threshold voltage, this has enabled a dramatic increase in the current density, which has now reached 0.6 A/mm. Excellent ION/IOFF current ratios have been reported for Schottky-gated structures, in some cases exceeding 109. Encouraging RF performance in Al-rich transistors has been reported as well, with fT and fmax demonstrated in the tens of gigahertz range for devices with less than 150 nm gates. Al-rich transistors have also shown lesser current degradation over temperature than GaN in extreme high-temperature environments up to 500 °C, while maintaining ION/IOFF ratios of ∼106 at 500 °C. Finally, enhancement-mode devices along with initial reliability and radiation results have been reported for Al-rich AlGaN transistors. The Al-rich transistors promise to be a very broad and exciting field with much more progress expected in the coming years as this technology matures.

More Details

Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors

Journal of Electronic Materials

Klein, Brianna A.; Baca, Albert G.; Lepkowski, Stefan; Nordquist, Christopher D.; Wendt, Joel R.; Allerman, A.A.; Armstrong, Andrew A.; Douglas, Erica A.; Abate, Vincent M.; Kaplar, Robert

Gate length dependent (80 nm–5000 mm) radio frequency measurements to extract saturation velocity are reported for Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors fabricated into radio frequency devices using electron beam lithography. Direct current characterization revealed the threshold voltage shifting positively with increasing gate length, with devices changing from depletion mode to enhancement mode when the gate length was greater than or equal to 450 nm. Transconductance varied from 10 mS/mm to 25 mS/mm, with the 450 nm device having the highest values. Maximum drain current density was 268 mA/mm at 10 V gate bias. Scattering-parameter characterization revealed a maximum unity gain bandwidth (fT) of 28 GHz, achieved by the 80 nm gate length device. A saturation velocity value of 3.8 × 106 cm/s, or 35% of the maximum saturation velocity reported for GaN, was extracted from the fT measurements.

More Details

Visible- and solar-blind photodetectors using AlGaN high electron mobility transistors with a nanodot-based floating gate

Photonics Research

Armstrong, Andrew A.; Klein, Brianna A.; Allerman, A.A.; Baca, Albert G.; Crawford, Mary H.; Podkaminer, Jacob; Perez, Carlos; Siegal, Michael P.; Douglas, Erica A.; Abate, Vincent M.; Leonard, Francois

AlGaN-channel high electron mobility transistors (HEMTs) were operated as visible- and solar-blind photodetectors by using GaN nanodots as an optically active floating gate. The effect of the floating gate was large enough to switch an HEMT from the off-state in the dark to an on-state under illumination. This opto-electronic response achieved responsivity > 108 A/W at room temperature while allowing HEMTs to be electrically biased in the offstate for low dark current and low DC power dissipation. The influence of GaN nanodot distance from the HEMT channel on the dynamic range of the photodetector was investigated, along with the responsivity and temporal response of the floating gate HEMT as a function of optical intensity. The absorption threshold was shown to be controlled by the AlN mole fraction of the HEMT channel layer, thus enabling the same device design to be tuned for either visible- or solar-blind detection.

More Details

Enhancement-mode Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistor with fluorine treatment

Applied Physics Letters

Klein, Brianna A.; Douglas, Erica A.; Armstrong, Andrew A.; Allerman, A.A.; Abate, Vincent M.; Fortune, Torben; Baca, Albert G.

Enhancement-mode Al0.7Ga0.3N-channel high electron mobility transistors (HEMTs) were achieved through a combination of recessed etching and fluorine ion deposition to shift the threshold voltage (VTH) relative to depletion-mode devices by +5.6 V to VTH = +0.5 V. Accounting for the threshold voltage shift (ΔVTH), current densities of approximately 30 to 35 mA/mm and transconductance values of 13 mS/mm were achieved for both the control and enhancement mode devices at gate biases of 1 V and 6.6 V, respectively. Little hysteresis was observed for all devices, with voltage offsets of 20 mV at drain currents of 1.0 × 10-3mA/mm. Enhancement-mode devices exhibited slightly higher turn-on voltages (+0.38 V) for forward bias gate currents. Piecewise evaluation of a threshold voltage model indicated a ΔVTH of +3.3 V due to a gate recess etching of 12 nm and an additional +2.3 V shift due to fluorine ions near the AlGaN surface.

More Details

Enhancement-mode AlGaN channel high electron mobility transistor enabled by p-AlGaN gate

Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics

Douglas, Erica A.; Klein, Brianna A.; Allerman, A.A.; Baca, Albert G.; Armstrong, Andrew A.; Fortune, Torben

This work exhibits the ability to shift the threshold voltage of an Al0.45Ga0.55N/Al0.3Ga0.7N high electron mobility transistor through the implementation of a 100 nm thick p-Al0.3Ga0.7N gate. A maximum threshold voltage of +0.3 V was achieved with a 3 μm gate length. In addition to achieving enhancement-mode operation, this work also shows the capability to obtain high saturated drain current (>50 mA/mm), no gate hysteresis, high ION,MAX/IOFF,MIN ratio of >109, and exceptionally low gate leakage current of 10-6 mA/mm even under high forward bias of Vgs = 8 V.

More Details

Radiation response of AlGaN-Channel HEMTs

IEEE Transactions on Nuclear Science

Martinez, Marino; King, Michael P.; Baca, Albert G.; Allerman, A.A.; Armstrong, Andrew A.; Klein, Brianna A.; Douglas, Erica A.; Kaplar, Robert; Swanson, Scot E.

We present heavy ion and proton data on AlGaN high-voltage HEMTs showing single event burnout (SEB), total ionizing dose, and displacement damage responses. These are the first such data for materials of this type. Two different designs of the epitaxial structure were tested for SEB. The default layout design showed burnout voltages that decreased rapidly with increasing LET, falling to about 25% of nominal breakdown voltage for ions with LET of about 34 MeV · cm2/mg for both structures. Samples of the device structure with lower AlN content were tested with varying gate-drain spacing and revealed an improved robustness to heavy ions, resulting in burnout voltages that did not decrease up to at least 33.9 MeV · cm2/mg. Failure analysis showed that there was consistently a point, location random, where gate and drain had been shorted. Oscilloscope traces of terminal voltages and currents during burnout events lend support to the hypothesis that burnout events begin with a heavy ion strike in the vulnerable region between gate and drain. This subsequently initiates a cascade of events resulting in damage that is largely manifested elsewhere in the device. This hypothesis also suggests a path for greatly improving the susceptibility to SEB as development of this technology goes forward. Testing with 2.5-MeV protons showed only minor changes in device characteristics.

More Details

RF Performance of Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with 80-nm Gates

IEEE Electron Device Letters

Baca, Albert G.; Klein, Brianna A.; Wendt, Joel R.; Lepkowski, Stefan; Nordquist, Christopher D.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Kaplar, Robert

Al-rich AlGaN-channel high electron mobility transistors with 80-nm long gates and 85% (70%) Al in the barrier (channel) were evaluated for RF performance. The dc characteristics include a maximum current of 160 mA/mm with a transconductance of 24 mS/mm, limited by source and drain contacts, and an on/off current ratio of 109. fT of 28.4 GHz and fMAX of 18.5 GHz were determined from small-signal S-parameter measurements. Output power density of 0.38 W/mm was realized at 3 GHz in a power sweep using on-wafer load pull techniques.

More Details

III-Nitride ultra-wide-bandgap electronic devices

Semiconductors and Semimetals

Kaplar, Robert; Allerman, A.A.; Armstrong, Andrew A.; Baca, Albert G.; Crawford, Mary H.; Dickerson, Jeramy; Douglas, Erica A.; Fischer, Arthur J.; Klein, Brianna A.; Reza, Shahed

This chapter discusses the motivation for the use of Ultra-Wide-Bandgap Aluminum Gallium Nitride semiconductors for power switching and radio-frequency applications. A review of the relevant figures of merit for both vertical and lateral power switching devices, as well as lateral radio-frequency devices, is presented, demonstrating the potential superior performance of these devices relative to Gallium Nitride. Additionally, representative results from the literature for each device type are reviewed, highlighting recent progress as well as areas for further research.

More Details

Radiation Response of AlGaN-Channel HEMTs

IEEE Transactions on Nuclear Science

Martinez, Marino; King, Michael P.; Baca, Albert G.; Allerman, A.A.; Armstrong, Andrew A.; Klein, Brianna A.; Douglas, Erica A.; Kaplar, Robert; Swanson, Scot E.

In this paper, we present heavy ion and proton data on AlGaN highvoltage HEMTs showing Single Event Burnout, Total Ionizing Dose, and Displacement Damage responses. These are the first such data for materials of this type. Two different designs of the epitaxial structure were tested for Single Event Burnout (SEB). The default layout design showed burnout voltages that decreased rapidly with increasing LET, falling to about 25% of nominal breakdown voltage for ions with LET of about 34 MeV·cm2/mg for both structures. Samples of the device structure with lower AlN content were tested with varying gate-drain spacing and revealed an improved robustness to heavy ions, resulting in burnout voltages that did not decrease up to at least 33.9 MeV·cm2/mg. Failure analysis showed there was consistently a point, location random, where gate and drain had been shorted. Oscilloscope traces of terminal voltages and currents during burnout events lend support to the hypothesis that burnout events begin with a heavy ion strike in the vulnerable region between gate and drain. This subsequently initiates a cascade of events resulting in damage that is largely manifested elsewhere in the device. This hypothesis also suggests a path for greatly improving the susceptibility to SEB as development of this technology goes forward. Lastly, testing with 2.5 MeV protons showed only minor changes in device characteristics.

More Details

Demonstration of a 9 kV reverse breakdown and 59 mΩ-cm2 specific on-resistance AlGaN/GaN Schottky barrier diode

Solid-State Electronics

Colon, Albert; Douglas, Erica A.; Pope, Andrew J.; Klein, Brianna A.; Stephenson, Chad A.; Van Heukelom, Michael; Tauke-Pedretti, Anna; Baca, Albert G.

Here, Al0.26Ga0.74N/GaN on SiC lateral Schottky diodes were fabricated with variable anode-to-cathode spacing and were analyzed for blocking and on-state device performance. On-chip normally-on High Electron Mobility Transistor (HEMT) structures were also fabricated for a comparison of blocking characteristics. The Schottky diode displayed an ideality factor of 1.59 with a Ni/AlGaN zero bias barrier height of 1.18 eV and a flat band barrier height of 1.59 eV. For anode-to-cathode spacings between 10 and 100 μm, an increase in median breakdown voltages from 529 V to 8519 V and median specific on-resistance (Ron-sp) from 1.5 to 60.7 mΩ cm2 was observed with an increase in spacing. The highest performing diode had a lateral figure of merit of 1.37 GW/cm2 corresponding to a breakdown voltage upwards of 9 kV and a Ron-sp of 59 mΩ cm2. This corresponds to the highest Schottky diode breakdown voltage reported thus far with an Al0.26Ga0.74N/GaN lateral structure.

More Details
Results 1–50 of 86
Results 1–50 of 86