Publications

Results 1–50 of 296

Search results

Jump to search filters

A model for K-shell x-ray yield from magnetic implosions at Sandia's Z machine

Physics of Plasmas

Schwarz, Jens; Vesey, Roger A.; Ampleford, David J.; Schaeuble, Marc-Andre S.; Giuliani, J.L.; Esaulov, A.; Dasgupta, A.; Jones, Brent M.

A zero-dimensional magnetic implosion model with a coupled equivalent circuit for the description of an imploding nested wire array or gas puff is presented. Circuit model results have been compared with data from imploding stainless steel wire arrays, and good agreement has been found. The total energy coupled to the load, E j × B, has been applied to a simple semi-analytic K-shell yield model, and excellent agreement with previously reported K-shell yields across all wire array and gas puff platforms is seen. Trade space studies in implosion radius and mass have found that most platforms operate near the predicted maximum yield. In some cases, the K-shell yield may be increased by increasing the mass or radius of the imploding array or gas puff.

More Details

Domination of the K-Radiation at a Z-Pinch Stagnation on Z by Numerous Tiny Spots and the Properties of the Spots Inferred by Experimental Determination of the K-Line Opacities

IEEE International Conference on Plasma Science

Maron, Y.; Bernshtam, V.; Zarnitsky, Y.; Fisher, V.; Nedostup, O.; Ampleford, David J.; Jennings, Christopher A.; Jones, Brent M.; Cuneo, Michael E.; Rochau, G.A.; Dunham, G.S.; Loisel, Guillaume P.

Detailed analysis of both the line-intensity ratios and line shapes of the K-lines of elements of different abundances (Fe, Cr, Ni, and Mn) emitted from the stagnation of a steel wire-array implosion on Z, were used to determine the line opacities. While the opacities at the early time of stagnation appear to be consistent with a nearly uniform hot-plasma cylinder on-axis surrounded by a colder annulus, the opacities during the peak K-emission strongly suggest that the main K-emission is due to small hot regions (spots) spread over the stagnating column. The spots are shown to be at least 4× denser than expected based on a uniform-cylinder emission (namely, ni > 3 ×1020 cm-3 ), are of diameters of about 200 μ or less (where the smaller the spots the higher are the densities), and are thousands in number. The total mass of the spots was determined to be 3-10 % of the load mass, and their total volume 3-15 % of the O 1.2-mm stagnation-column volume, both are less than the respective values for the earlier period of lower K power.

More Details

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David J.; Weis, Matthew R.; Myers, Clayton; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael A.; Knapp, P.F.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Foulk, James W.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

A neutron recoil-spectrometer for measuring yield and determining liner areal densities at the Z facility

Review of Scientific Instruments

Lahmann, B.; Gatu Johnson, M.; Hahn, K.D.; Frenje, J.A.; Ampleford, David J.; Jones, Brent M.; Mangan, Michael A.; Ruiz, C.L.; Seguin, F.H.; Petrasso, R.D.

A proof-of-principle CR-39 based neutron-recoil-spectrometer was built and fielded on the Z facility. Data from this experiment match indium activation yields within a factor of 2 using simplified instrument response function models. The data also demonstrate the need for neutron shielding in order to infer liner areal densities. A new shielded design has been developed. The spectrometer is expected to achieve signal-to-background greater than 2 for the down-scattered neutron signal and greater than 30 for the primary signal.

More Details

An Evaluation of Bang-Time Measurements from a Multichannel, Triaxial, nTOF Diagnostic for MagLIF Experiments at the Z facility

Ruiz, Carlos L.; Fehl, D.L.; Chandler, Gordon A.; Cooper, Gary; Jones, Brent M.; Styron, Jedediah D.; Torres, Jose

Neutron bang times for a series of MagLIF (Magnetic Liner Inertial Fusion) experiments with D2-filled targets have been measured at the Z facility. The emitted neutrons were detected as current-mode pulses in a multichannel, neutron time-of-flight (nTOF) diagnostic with conventional, scintillator-photomultiplier-tube (PMT) detectors. In these experiments, the detectors were fielded at known, fixed distances L (690-2510 cm) from the target, and on three, non-coplanar (but convergent) lines-of-sight (LOS). The primary goal of this diagnostic was to estimate a fiducial time (bang time) relative to an externally generated time-base for synchronizing all the diagnostics in an experiment. Recorded arrival times (A7) of the pulses were characterized experimentally by three numerical methods: a first-moment estimate (centroid) and two nodal measures — Savitzky-Golay (SG) smoothing and a single point peak estimate of the raw data. These times were corrected for internal detector time delays (transit and impulse-response function) — an adjustment that linked the recorded ATs to the corresponding arrival of uncollided neutrons at each detector. The bang time was then estimated by linearly regressing the arrival times against the associated distances to the source; tbang (on the system timescale) was taken as the temporal intercept of the regression equation at distance L = 0. This article reports the analysis for a representative shot #2584 for which (a) the recorded ATs — even without detector corrections — agreed by method in each channel to within 1-2 ns; (b) internal corrections were each ~3 — 5 ns; and (c) a 95% uncertainty (confidence) interval for tbang in this shot was estimated at ±3 ns with 4 degrees of freedom. A secondary goal for this diagnostic was to check that the bang time measurements corresponded to neutrons emitted by the D(d,n)3He reaction in a thermalized DD plasma. According to the theoretical studies by Brysk, such neutrons should be emitted with an isotropic Gaussian distribution of mean kinetic energy $ \overline{E}$ of 2.449 MeV; this energy translates to a mean neutron speed $ \overline{u}$ of 2.160 cm/ns [D. H. Munro, Nuclear Fusion, 56(3) 036001 (2016)]. In the MagLIF series of shots there was no evidence of spatial asymmetry in the time-distance regressions, and it was possible to extract the mean neutron speed from the slope of these fits. In shot 2584 $ \overline{u}$ was estimated at 2.152 cm/ns ± 0.010 cm/ns [95 % confidence, 4 dof] and the mean kinetic energy $ \overline{E}$ (with relativistic corrections) was 2.431 MeV ± 0.022 MeV [95 % confidence, 4 dof] — results supporting the assumption that D-D neutrons were, in fact, measured.

More Details

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, Stephen A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, P.F.; Lamppa, Derek C.; Awe, Thomas J.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Cuneo, Michael E.; Geissel, Matthias; Glinsky, Michael E.; Hahn, Kelly D.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, Christopher A.; Jones, Brent M.; Laity, George R.; Martin, Matthew R.; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens; Schmit, Paul; Shipley, Gabriel A.; Sinars, Daniel; Smith, Ian C.; Stygar, William; Vesey, Roger A.; Weis, Matthew R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

One dimensional imager of neutrons on the Z machine

Review of Scientific Instruments

Ampleford, David J.; Ruiz, Carlos L.; Fittinghoff, David N.; Vaughan, Jeremy; Hahn, Kelly; Lahmann, Brandon; Gatu-Johnson, Maria; Frenje, Johan; Petrasso, Richard; Ball, Christopher R.; Maurer, Andrew J.; Knapp, P.F.; Harvey-Thompson, Adam J.; Fisher, John; Alberto, Perry; Torres, Jose; Jones, Brent M.; Rochau, G.A.; May, Mark J.

We recently developed a one-dimensional imager of neutrons on the Z facility. The instrument is designed for Magnetized Liner Inertial Fusion (MagLIF) experiments, which produce D-D neutrons yields of ∼3 × 1012. X-ray imaging indicates that the MagLIF stagnation region is a 10-mm long, ∼100-μm diameter column. The small radial extents and present yields precluded useful radial resolution, so a one-dimensional imager was developed. The imaging component is a 100-mm thick tungsten slit; a rolled-edge slit limits variations in the acceptance angle along the source. CR39 was chosen as a detector due to its negligible sensitivity to the bright x-ray environment in Z. A layer of high density poly-ethylene is used to enhance the sensitivity of CR39. We present data from fielding the instrument on Z, demonstrating reliable imaging and track densities consistent with diagnosed yields. For yields ∼3 × 1012, we obtain resolutions of ∼500 μm.

More Details

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David J.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, P.F.; Laity, George R.; Martin, Matthew R.; Nagayama, Taisuke; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul; Schwarz, Jens; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund; Cuneo, Michael E.; Jones, Brent M.; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel; Stygar, William A.

Abstract not provided.

Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

Review of Scientific Instruments

Jones, Brent M.; Lahmann, B.; Milanese, L.M.; Han, W.; Gatu Johnson, M.; Seguin, F.H.; Frenje, J.A.; Petrasso, R.D.; Hahn, K.D.

A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.

More Details

Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z

Physics of Plasmas

Harvey-Thompson, Adam J.; Jennings, Christopher A.; Jones, Brent M.; Ampleford, David J.; Lamppa, Derek C.; Coverdale, Christine A.; Cuneo, Michael E.; Hansen, Stephanie B.; Jones, Michael; Moore, Nathan W.; Rochau, G.A.; Apruzese, John P.; Giuliani, John L.; Thornhill, John W.

Double-shell Ar gas puff implosions driven by 16.5±0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ (B. Jones et al., Phys. Plasmas, 22, 020706, 2015). In addition, previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations.

More Details

A non-LTE analysis of high energy density Kr plasmas on Z and NIF

Physics of Plasmas

Dasgupta, A.; Clark, R.W.; Ouart, N.; Giuliani, J.; Velikovich, A.; Ampleford, David J.; Hansen, Stephanie B.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Jones, Brent M.; Flanagan, Timothy M.; Bell, K.; Apruzese, J.P.; Fournier, K.B.; Scott, H.A.; May, M.J.; Barrios, M.A.; Colvin, J.D.; Kemp, G.E.

Multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number ZA than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on the two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton's M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr's ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus ZA is indeed related to the energy input characteristics. This work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and NIF.

More Details

Neutron Diagnostic Development fro the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Jones, Brent M.; Gomez, Matthew R.; Knapp, P.F.; Sefkow, Adam B.; Hansen, Stephanie B.; Schmit, Paul; Harding, Eric H.; Norris, Edward T.; Torres, Jose; Cooper, Gary; Styron, Jedediah D.; Glebov, V.Y.; Frenje, J.; Lahmann, B.; Gatu-Johnson, M.; Seguin, F.; Petrasso, R.; Fittinghoff, D.; May, M.; Snyder, L.; Moy, K.; Buckles, R.

Abstract not provided.

Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

Physics of Plasmas

Tangri, V.; Harvey-Thompson, Adam J.; Giuliani, J.L.; Thornhill, J.W.; Velikovich, A.L.; Apruzese, J.P.; Ouart, N.D.; Dasgupta, A.; Jones, Brent M.; Jennings, Christopher A.

Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

More Details

Overview of Neutron diagnostic measurements for MagLIF Experiments on the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

DIAGNOSING MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS USING NEUTRON DIAGNOSTICS ON THE Z ACCELERATOR

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

Journal of Physics: Conference Series

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrman, M.C.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

More Details

SNL perspective on the nTOF workshop

Jones, Brent M.; Hahn, Kelly; Ruiz, Carlos L.; Chandler, Gordon A.; Fehl, David L.; Lash, Joel S.; Knapp, P.F.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Mcpherson, Leroy A.; Nelson, Alan J.; Rochau, G.A.; Schmit, Paul; Sefkow, Adam B.; Sinars, Daniel; Torres, Jose; Bur, James A.; Cooper, Gary; Bonura, Michael; Long, Joel; Styron, Jedediah D.; Buckles, Rob; Garza, Irene; Moy, Kenneth J.; Davis, Brent; Tinsley, Jim; Tiangco, Rod; Miller, Kirk; Mckenna, Ian

Abstract not provided.

Non-thermal x-ray emission from wire array z-pinches

Ampleford, David J.; Hansen, Stephanie B.; Jennings, Christopher A.; Webb, Timothy J.; Harper-Slaboszewicz, V.; Loisel, Guillaume P.; Flanagan, Timothy M.; Bell, K.; Jones, Brent M.; Rochau, G.A.; Chittenden, Jeremy P.; Sherlock, Mark; Appelbe, Brian; Giuliani, John; Ouart, Nicholas; Seely, John; Mcpherson, Leroy A.

We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

More Details
Results 1–50 of 296
Results 1–50 of 296