Publications

Results 76–100 of 102

Search results

Jump to search filters

Reinvestigation into Closure Predictions of Room D at the Waste Isolation Pilot Plant

Reedlunn, Benjamin R.

Room D was an in-situ, isothermal, underground experiment conducted at theWaste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recently by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.

More Details

Reinvestigation into Closure Predictions of Room D at the Waste Isolation Pilot Plant

Reedlunn, Benjamin R.

Room D was an in-situ, isothermal, underground experiment conducted at the Waste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under-predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recently by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under-predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.

More Details

Dynamic compressive response of wrought and additive manufactured 304L stainless steels

EPJ Web of Conferences

Nishida, E.E.; Song, Bo S.; Maguire, Michael C.; Adams, David P.; Carroll, Jay D.; Wise, Jack L.; Reedlunn, Benjamin R.; Bishop, Joseph E.; Palmer, Todd

Additive manufacturing (AM) technology has been developed to fabricate metal components that include complex prototype fabrication, small lot production, precision repair or feature addition, and tooling. However, the mechanical response of the AM materials is a concern to meet requirements for specific applications. Differences between AM materials as compared to wrought materials might be expected, due to possible differences in porosity (voids), grain size, and residual stress levels. When the AM materials are designed for impact applications, the dynamic mechanical properties in both compression and tension need to be fully characterized and understood for reliable designs. In this study, a 304L stainless steel was manufactured with AM technology. For comparison purposes, both the AM and wrought 304L stainless steels were dynamically characterized in compression Kolsky bar techniques. They dynamic compressive stress-strain curves were obtained and the strain rate effects were determined for both the AM and wrought 304L stainless steels. A comprehensive comparison of dynamic compressive response between the AM and wrought 304L stainless steels was performed. SAND2015-0993 C.

More Details

An Experimental Study of Shear-Dominated Failure in the 2013 Sandia Fracture Challenge Specimen

Corona, Edmundo C.; Deibler, Lisa A.; Reedlunn, Benjamin R.; Ingraham, Mathew D.; Williams, Shelley

This report presents an experimental study motivated by results obtained during the 2013 Sandia Fracture Challenge. The challenge involved A286 steel, shear-dominated compression specimens whose load-deflection response contained a load maximum fol- lowed by significant displacement under decreasing load, ending with a catastrophic fracture. Blind numerical simulations deviated from the experiments well before the maximum load and did not predict the failure displacement. A series of new tests were conducted on specimens machined from the original A286 steel stock to learn more about the deformation and failure processes in the specimen and potentially improve future numerical simulations. The study consisted of several uniaxial tension tests to explore anisotropy in the material, and a set of new tests on the compression speci- men. In some compression specimen tests, stereo digital image correlation (DIC) was used to measure the surface strain fields local to the region of interest. In others, the compression specimen was loaded to a given displacement prior to failure, unloaded, sectioned, and imaged under the microscope to determine when material damage first appeared and how it spread. The experiments brought the following observations to light. The tensile tests revealed that the plastic response of the material is anisotropic. DIC during the shear- dominated compression tests showed that all three in-plane surface strain components had maxima in the order of 50% at the maximum load. Sectioning of the specimens revealed no signs of material damage at the point where simulations deviated from the experiments. Cracks and other damage did start to form approximately when the max- imum load was reached, and they grew as the load decreased, eventually culminating in catastrophic failure of the specimens. In addition to the steel specimens, a similar study was carried out for aluminum 7075-T651 specimens. These specimens achieved much lower loads and displacements, and failure occurred very close to the maximum in the load-deflection response. No material damage was observed in these specimens, even when failure was imminent. In the future, we plan to use these experimental results to improve numerical simu- lations of the A286 steel experiments, and to improve plasticity and failure models for the Al 7075 stock. The ultimate goal of our efforts is to increase our confidence in the results of numerical simulations of elastic-plastic structural behavior and failure.

More Details

An attempt to calibrate and validate a simple ductile failure model against axial-torsion experiments on Al 6061-T651

Reedlunn, Benjamin R.; Lu, Wei-Yang L.

This report details a work in progress. We have attempted to calibrate and validate a Von Mises plasticity model with the Johnson-Cook failure criterion ( Johnson & Cook , 1985 ) against a set of experiments on various specimens of Al 6061-T651. As will be shown, the effort was not successful, despite considerable attention to detail. When the model was com- pared against axial-torsion experiments on tubes, it over predicted failure by 3 x in tension, and never predicted failure in torsion, even when the tube was twisted by 4 x further than the experiment. While this result is unfortunate, it is not surprising. Ductile failure is not well understood. In future work, we will explore whether more sophisticated material mod- els of plasticity and failure will improve the predictions. Selecting the appropriate advanced material model and interpreting the results of said model are not trivial exercises, so it is worthwhile to fully investigate the behavior of a simple plasticity model before moving on to an anisotropic yield surface or a similarly complicated model.

More Details

Large motion high cycle high speed optical fibers for space based applications

Stromberg, Peter G.; Tandon, Rajan T.; Gibson, Cory S.; Reedlunn, Benjamin R.; Rasberry, Roger D.; Rohr, Garth R.

Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

More Details
Results 76–100 of 102
Results 76–100 of 102