Risk-Informed Methodology for Enterprise Security: Method and Applications for Nuclear Facilities
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Topical Meeting on Probabilistic Safety Assessment and Analysis 2013, PSA 2013
Physical security analyses for nuclear reactors have historically sought to ensure that there is an acceptably low probability of success for a "design basis" adversary to accomplish a theft or sabotage objective, even for the adversary's most advantageous path. While some have used probabilistic risk assessment to characterize these risks, the lack of a validated attack frequency, among other things, has made this difficult. Recent work at Sandia National Laboratories (SNL) characterizes a facility's security risk for a scenario in terms of level of difficulty an adversary would encounter in order to be reasonably sure of success (the Risk Informed Management of Enterprise Security (RIMES) methodology). Scenarios with lower levels of difficulty can then be addressed through design changes or improvements to the physical protection system. This work evaluates the level of difficulty of a number of attack scenarios for Small Modular Reactors (SMRs), and provides insight to help designers optimize the protection of their facilities. The methodology and general insights are described here.
Abstract not provided.
This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Transactions of the American Nuclear Society
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.
Abstract not provided.
Abstract not provided.
Abstract not provided.