Publications

Results 201–225 of 254

Search results

Jump to search filters

THz emission from coherent plasmons in InAs nanowires

Proceedings of SPIE - The International Society for Optical Engineering

Seletskiy, D.V.; Hasselbeck, M.P.; Sheik-Bahae, M.; Cederberg, Jeffrey G.; Talin, A.A.

We report the first observation of coherent plasmon emission of THz radiation from arrays of semiconductor nanowires. The THz signal strength from InAs nanowires is comparable to a planar substrate, indicating the nanowires are highly efficient emitters. This is explained by the preferential orientation of plasma motion to the wire surface, which overcomes radiation trapping by total-internal reflection. Using a bulk Drude model, we identify the average donor density and mobility in the nanowires in a non-contact manner. Contact IV transconductance measurements provide order of magnitude agreement with values obtained from the THz spectra. © 2009 SPIE.

More Details

Large-area subwavelength aperture arrays fabricated using nanoimprint lithography

IEEE Transactions on Nanotechnology

Skinner, Jack L.; Hunter, Luke L.; Talin, A.A.; Provine, J.; Horsley, David A.

We report on the fabrication and characterization of large-area 2-D square arrays of subwavelength holes in Ag and Al films. Fabrication is based on thermal nanoimprint lithography and metal evaporation, without the need for etching, and is compatible with low-cost, large-scale production. Reflectance spectra for these arrays display an intensity minimum whose amplitude, center wavelength, and line width depend on the geometry of the array and the reflectivity of the metal film. By placing various fluids in contact with the subwavelength aperture arrays, we observe that the center wavelength of the reflectance minimum varies linearly with the refractive index of the fluid with a sensitivity of over 500 nm per refractive index unit. The surface plasmon theory is used to predict sensitivities to refractive index change with accuracies better than 0.5%. © 2008 IEEE.

More Details

Three-dimensional visualization of surface defects in core-shell nanowires

Journal of Physical Chemistry C

Arslan, Ilke A.; Talin, A.A.; Wang, George T.

The high surface to volume ratio of nanowires makes them attractive for exploiting exotic materials properties and nanoengineering new device structures. To realize these goals, a fundamental understanding of the morphology and growth of the nanowires must be attained in three dimensions, because a two-dimensional projection image of these complex three-dimensional nanomaterials is not sufficient to describe their properties. Scanning transmission electron tomography is used here to obtain three-dimensional tomograms of GaN/AIN core-shell nanowires. This technique reveals the overall morphology and triangular shape of the nanowires, as well as their relation to the catalyst particle, with a resolution of ∼1 nm in all three spatial dimensions. Defects that appear to be in the core of the nanowires in two-dimensional images are shown to be surface defects induced during growth, demonstrating the importance of this three-dimensional technique in analyzing nanomaterials. © 2008 American Chemical Society.

More Details

A MEMS light modulator based on diffractive nanohole gratings

Optics Express

Skinner, Jack L.; Talin, A.A.; Horsley, David A.

We present the design, fabrication, and testing of a microelectromechanical systems (MEMS) light modulator based on pixels patterned with periodic nanohole arrays. Flexure-suspended silicon pixels are patterned with a two dimensional array of 150 nm diameter nanoholes using nanoimprint lithography. A top glass plate assembled above the pixel array is used to provide a counter electrode for electrostatic actuation. The nanohole pattern is designed so that normally-incident light is coupled into an in-plane grating resonance, resulting in an optical stop-band at a desired wavelength. When the pixel is switched into contact with the top plate, the pixel becomes highly reflective. A 3:1 contrast ratio at the resonant wavelength is demonstrated for gratings patterned on bulk Si substrates. The switching time is 0.08 ms and the switching voltage is less than 15V. © 2008 Optical Society of America.

More Details

Micromechanical and microfluidic devices incorporating resonant metallic gratings fabricated using nanoimprint lithography

Journal of Nanophotonics

Horsley, D.A.; Talin, A.A.; Skinner, J.L.

Optical filters based on resonant gratings have spectral characteristics that are lithographically defined. Nanoimprint lithography is a relatively new method for producing large area gratings with sub-micron features. Computational modeling using rigorous coupled-wave analysis allows gratings to be designed to yield sharp reflectance maxima and minima. Combining these gratings with microfluidic channels and micromechanical actuators produced using micro electromechanical systems (MEMS) technology forms the basis for producing tunable filters and other wavelength selective elements. These devices achieve tunable optical characteristics by varying the index of refraction on the surface of the grating. Coating the grating surface with water creates a 33% change in the resonant wavelength whereas bringing a grating into contact with a quartz surface shifts the resonant wavelength from 558 nm to 879 nm, a fractional change of 58%. The reflectivity at a single wavelength can be varied by approximately a factor of three. Future applications of these devices may include tunable filters or optical modulators. © 2008 Society of Photo-Optical Instrumentation Engineers.

More Details
Results 201–225 of 254
Results 201–225 of 254