Transient Photocurrent from High-Voltage Vertical GaN Diodes Irradiated with Electrons:Experiments and Simulations
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Materials
Targeted doping of grain boundaries is widely pursued as a pathway for combating thermal instabilities in nanocrystalline metals. However, certain dopants predicted to produce grain-boundary-segregated nanocrystalline configurations instead form small nanoprecipitates at elevated temperatures that act to kinetically inhibit grain growth. Here, thermodynamic modeling is implemented to select the Mo–Au system for exploring the interplay between thermodynamic and kinetic contributions to nanostructure stability. Using nanoscale multilayers and in situ transmission electron microscopy thermal aging, evolving segregation states and the corresponding phase transitions are mapped with temperature. The microstructure is shown to evolve through a transformation at lower homologous temperatures (<600 °C) where solute atoms cluster and segregate to the grain boundaries, consistent with predictions from thermodynamic models. An increase in temperature to 800 °C is accompanied by coarsening of the grain structure via grain boundary migration but with multiple pinning events uncovered between migrating segments of the grain boundary and local solute clustering. Direct comparison between the thermodynamic predictions and experimental observations of microstructure evolution thus demonstrates a transition from thermodynamically preferred to kinetically inhibited nanocrystalline stability and provides a general framework for decoupling contributions to complex stability transitions while simultaneously targeting a dominant thermal stability regime.
Abstract not provided.
Acta Materialia
Understanding the deformation-induced martensitic transformation (DIMT) is critical for interpreting the structure-property relationships that govern the performance of transformation-induced plasticity (TRIP) assisted steels. However, modern TRIP-assisted steels often exhibit DIMT kinetics that are not easily captured by existing empirical models based on bulk tensile strain. We address this challenge by combined bulk uniaxial tensile tests and in-situ high energy synchrotron X-ray diffraction, which resolved the phase volume fractions, stress-strain response, and microstructure evolution of each constituent phase. A modification of the Olson-Cohen model is implemented, which describes the martensitic transformation kinetics as a function of the estimated partitioned strain in austenite, rather than the bulk tensile strain. This DIMT kinetic model is used as a framework to clarify the root cause of an insufficiently understood toughness trough reported for TRIP-assisted steels during deformation at elevated temperatures. Here, the importance of the temperature-dependent toughness is discussed, based on the opportunity to modify deformation processes to tailor the DIMT kinetics and mechanical properties during forming and in service.
Geoscientific Model Development
Runoff is a critical component of the terrestrial water cycle, and Earth system models (ESMs) are essential tools to study its spatiotemporal variability. Runoff schemes in ESMs typically include many parameters so that model calibration is necessary to improve the accuracy of simulated runoff. However, runoff calibration at a global scale is challenging because of the high computational cost and the lack of reliable observational datasets. In this study, we calibrated 11 runoff relevant parameters in the Energy Exascale Earth System Model (E3SM) Land Model (ELM) using a surrogate-assisted Bayesian framework. First, the polynomial chaos expansion machinery with Bayesian compressed sensing is used to construct computationally inexpensive surrogate models for ELM-simulated runoff at 0.5 × 0.5 for 1991-2010. The error metric between the ELM simulations and the benchmark data is selected to construct the surrogates, which facilitates efficient calibration and avoids the more conventional, but challenging, construction of high-dimensional surrogates for the ELM simulated runoff. Second, the Sobol' index sensitivity analysis is performed using the surrogate models to identify the most sensitive parameters, and our results show that, in most regions, ELM-simulated runoff is strongly sensitive to 3 of the 11 uncertain parameters. Third, a Bayesian method is used to infer the optimal values of the most sensitive parameters using an observation-based global runoff dataset as the benchmark. Our results show that model performance is significantly improved with the inferred parameter values. Although the parametric uncertainty of simulated runoff is reduced after the parameter inference, it remains comparable to the multimodel ensemble uncertainty represented by the global hydrological models in ISMIP2a. Additionally, the annual global runoff trend during the simulation period is not well constrained by the inferred parameter values, suggesting the importance of including parametric uncertainty in future runoff projections.
Sandia National Laboratories has tested and evaluated a new version of the Chaparral 64S infrasound sensor, designed and manufactured by Chaparral Physics. The purpose of this infrasound sensor evaluation is to measure the performance characteristics in such areas as power consumption, sensitivity, full scale, self-noise, dynamic range, response, passband, sensitivity variation due to changes in barometric pressure and temperature, and sensitivity to acceleration. The Chaparral 64S infrasound sensors are being evaluated for use in the International Monitoring System (IMS) of the Preparatory Commission to the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A collection of x-ray computed tomography scans of specimens from the Museum of Southwestern Biology.