Publications

Results 1326–1350 of 99,299

Search results

Jump to search filters

Air separation and N2 purification with Ba0.15Sr0.85FeO3-δ via a two-step thermochemical process

Solar Energy

Bush, Hagan E.; Kury, Matthew; Berquist, Zachary; Rivas, Tania; Finale, Madeline; Albrecht, Kevin; Ambrosini, Andrea A.

Thermochemical air separation to produce high-purity N2 was demonstrated in a vertical tube reactor via a two-step reduction–oxidation cycle with an A-site substituted perovskite Ba0.15Sr0.85FeO3–δ (BSF1585). BSF1585 particles were synthesized and characterized in terms of their chemical, morphological, and thermophysical properties. A thermodynamic cycle model and sensitivity analysis using computational heat and mass transfer models of the reactor were used to select the system operating parameters for a concentrating solar thermal-driven process. Thermal reduction up to 800 °C in air and temperature-swing air separation from 800 °C to minimum temperatures between 400 and 600 °C were performed in the reactor containing a 35 g packed bed of BSF1585. The reactor was characterized for dispersion, and air separation was characterized via mass spectrometry. Gas measurements indicated that the reactor produced N2 with O2 impurity concentrations as low as 0.02 % for > 30 min of operation. A parametric study of air flow rates suggested that differences in observed and thermodynamically predicted O2 impurities were due to imperfect gas transport in the bed. Temperature swing reduction/oxidation cycling experiments between 800 and 400 °C in air were conducted with no statistically significant degradation in N2 purity over 50 cycles.

More Details

Molecular Dynamics Simulations of Calcite Fracture in Water

Journal of Physical Chemistry C

Wang, Qiaoyi; Rimsza, Jessica; Harvey, Jacob A.; Newell, Pania; Grunwald, Michael; Ilgen, Anastasia G.

Calcite (CaCO3) is one of the most common minerals in geologic and engineered systems. It is often in contact with aqueous solutions, causing chemically assisted fracture that is critical to understanding the stability of subsurface systems and manmade structures. Calcite fracture was evaluated with reactive molecular dynamics simulations, including the impacts of crack tip geometry (notch), the presence of water, and surface hydroxyl groups. Chemo-mechanical weakening was assessed by comparing the loads where fracture began to propagate. Our analyses show that in the presence of a notch, the load at which crack growth begins is lower, compared to the effect of water or surface hydroxyls. Additionally, the breaking of two adjacent Ca-O bonds is the kinetic limitation for crack initiation, since transiently broken bonds can reform, not resulting in crack growth. In aqueous environments, fresh (not hydroxylated) calcite surfaces exhibited water strengthening. Manual addition of H+ and/or OH- species on the (104) calcite surface resulted in chemo-mechanical weakening of calcite by 9%. Achieving full hydroxylation of the calcite surface was thermodynamically and kinetically limited, with only 0.17-0.01 OH/nm2 surface hydroxylation observed on the (104) surface at the end of the simulations. The limited reactivity of pure water with the calcite surface restricts the chemo-mechanical effects and suggests that reactions between physiosorbed water and localized structural defects may be dominating the chemo-mechanical process in the studies where water weakening has been reported.

More Details

Extraction of the electron excess temperature in terahertz quantum cascade lasers from laser characteristics

Nanophotonics (Online)

Lander Gower, Nathalie; Levy, Shiran; Piperno, Silvia; Addamane, Sadhvikas J.; Reno, John L.; Albo, Asaf

We propose a method to extract the upper laser level’s (ULL’s) excess electronic temperature from the analysis of the maximum light output power (Pmax) and current dynamic range ΔJd = (JmaxJth) of terahertz quantum cascade lasers (THz QCLs). We validated this method, both through simulation and experiment, by applying it on THz QCLs supporting a clean three-level system. Detailed knowledge of electronic excess temperatures is of utmost importance in order to achieve high temperature performance of THz QCLs. Our method is simple and can be easily implemented, meaning an extraction of the excess electron temperature can be achieved without intensive experimental effort. This knowledge should pave the way toward improvement of the temperature performance of THz QCLs beyond the state-of-the-art.

More Details

Fabrication of thin diamond membranes by Ne+ implantation

Giant

Basso, Luca B.; Titze, Michael; Henshaw, Jacob D.; Kehayias, Pauli; Cong, Rong; Saleh Ziabari, Maziar S.; Lu, Tzu M.; Lilly, Michael; Mounce, Andrew M.

Color centers in diamond are one of the most promising tools for quantum information science. Of particular interest is the use of single-crystal diamond membranes with nanoscale-thickness as hosts for color centers. Indeed, such structures guarantee a better integration with a variety of other quantum materials or devices, which can aid the development of diamond-based quantum technologies, from nanophotonics to quantum sensing. A common approach for membrane production is what is known as “smart-cut”, a process where membranes are exfoliated from a diamond substrate after the creation of a thin sub-surface amorphous carbon layer by He+ implantation. Due to the high ion fluence required, this process can be time-consuming. In this work, we demonstrated the production of thin diamond membranes by neon implantation of diamond substrates. With the target of obtaining membranes of ~200 nm thickness and finding the critical damage threshold, we implanted different diamonds with 300 keV Ne+ ions at different fluences. We characterized the structural properties of the implanted diamonds and the resulting membranes through SEM, Raman spectroscopy, and photoluminescence spectroscopy. We also found that a SRIM model based on a two-layer diamond/sp2 -carbon target better describes ion implantation, allowing us to estimate the diamond critical damage threshold for Ne+ implantation. Compared to He+ smart-cut, the use of a heavier ion like Ne+ results in a ten-fold decrease in the ion fluence required to obtain diamond membranes and allows to obtain shallower smart-cuts, i.e. thinner membranes, at the same ion energy.

More Details

Doping engineering: Next step toward room temperature performance of terahertz quantum cascade lasers

Journal of Vacuum Science and Technology B

Lander Gower, Nathalie; Levy, Shiran; Piperno, Silvia; Addamane, Sadhvikas J.; Reno, John L.; Albo, Asaf

We hereby offer a comprehensive analysis of various factors that could potentially enable terahertz quantum cascade lasers (THz QCLs) to achieve room temperature performance. We thoroughly examine and integrate the latest findings from recent studies in the field. Our work goes beyond a mere analysis; it represents a nuanced and comprehensive exploration of the intricate factors influencing the performance of THz QCLs. Through a comprehensive and holistic approach, we propose novel insights that significantly contribute to advancing strategies for improving the temperature performance of THz QCLs. This all-encompassing perspective allows us not only to present a synthesis of existing knowledge but also to offer a fresh and nuanced strategy to improve the temperature performance of THz QCLs. We draw new conclusions from prior works, demonstrating that the key to enhancing THz QCL temperature performance involves not only optimizing interface quality but also strategically managing doping density, its spatial distribution, and profile. This is based on our results from different structures, such as two experimentally demonstrated devices: the spit-well resonant-phonon and the two-well injector direct-phonon schemes for THz QCLs, which allow efficient isolation of the laser levels from excited and continuum states. In these schemes, the doping profile has a setback that lessens the overlap of the doped region with the active laser states. Our work stands as a valuable resource for researchers seeking to gain a deeper understanding of the evolving landscape of THz technology. Furthermore, we present a novel strategy for future endeavors, providing an enhanced framework for continued exploration in this dynamic field. This strategy should pave the way to potentially reach higher temperatures than the latest records reached for Tmax of THz QCLs.

More Details

A Formalization of Core Why3 in Coq

Proceedings of the ACM on Programming Languages

Cohen, Joshua M.; Johnson-Freyd, Philip

Intermediate verification languages like Why3 and Boogie have made it much easier to build program verifiers, transforming the process into a logic compilation problem rather than a proof automation one. Why3 in particular implements a rich logic for program specification with polymorphism, algebraic data types, recursive functions and predicates, and inductive predicates; it translates this logic to over a dozen solvers and proof assistants. Accordingly, it serves as a backend for many tools, including Frama-C, EasyCrypt, and GNATProve for Ada SPARK. But how can we be sure that these tools are correct? The alternate foundational approach, taken by tools like VST and CakeML, provides strong guarantees by implementing the entire toolchain in a proof assistant, but these tools are harder to build and cannot directly take advantage of SMT solver automation. As a first step toward enabling automated tools with similar foundational guarantees, we give a formal semantics in Coq for the logic fragment of Why3. We show that our semantics are useful by giving a correct-by-construction natural deduction proof system for this logic, using this proof system to verify parts of Why3's standard library, and proving sound two of Why3's transformations used to convert terms and formulas into the simpler logics supported by the backend solvers.

More Details

Nuclear magnetic resonance and molecular simulation study of H2 and CH4 adsorption onto shale and sandstone for hydrogen geological storage

International Journal of Hydrogen Energy

Ho, Tuan A.; Dasgupta, Nabankur; Choudhary, Aditya; Wang, Yifeng

Understanding pure H2 and H2/CH4 adsorption and diffusion in earth materials is one vital step toward a successful and safe H2 storage in depleted gas reservoirs. Despite recent research efforts such understanding is far from complete. In this work we first use Nuclear Magnetic Resonance (NMR) experiments to study the NMR response of injected H2 into Duvernay shale and Berea sandstone samples, representing materials in confining and storage zones. Then we use molecular simulations to investigate H2/CH4 competitive adsorption and diffusion in kerogen, a common component of shale. Our results indicate that in shale there are two H2 populations, i.e., free H2 and adsorbed H2, that yield very distinct NMR responses. However, only free gas presents in sandstone that yields a H2 NMR response similar to that of bulk H2. About 10 % of injected H2 can be lost due to adsorption/desorption hysteresis in shale, and no H2 loss (no hysteresis) is observed in sandstone. Our molecular simulation results support our NMR results that there are two H2 populations in nanoporous materials (kerogen). The simulation results also indicate that CH4 outcompetes H2 in adsorption onto kerogen, due to stronger CH4-kerogen interactions than H2-kerogen interactions. Nevertheless, in a depleted gas reservoir with low CH4 gas pressure, about ∼30 % of residual CH4 can be desorbed upon H2 injection. The simulation results also predict that H2 diffusion in porous kerogen is about one order of magnitude higher than that of CH4 and CO2. This work provides an understanding of H2/CH4 behaviors in deleted gas reservoirs upon H2 injection and predictions of H2 loss and CH4 desorption in H2 storage.

More Details

Anelastic Strain Recovery as a measure of in situ stresses at FORGE

58th US Rock Mechanics / Geomechanics Symposium 2024, ARMA 2024

Ingraham, Mathew D.; Ghassemi, A.

Anelastic strain recovery, the process of measuring the time dependent recovered strain after a core is cut at depth was utilized to make a measure of the in-situ properties stresses at depth at the FORGE (Frontier Observatory for Research in Geothermal Energy) site in Milford Utah. Core was collected from a region of well 16B at approximately 4860-4870 ft. Core was instrumented with strain gages within 10 hours of the core being cut. The relaxation of the cores was measured for approximately one month, and the results analyzed, which showed that the principal stresses were slightly off vertical, and magnitudes are close to equal.

More Details

Frequency Security Index-Based State of Health Monitoring of a Microgrid Using Energy Storage Systems

2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2024

Rai, Astha; Bhujel, Niranjan; Tamrakar, Ujjwol; Hummels, Donald; Byrne, Raymond H.; Tonkoski, Reinaldo

In low inertia grids, significant frequency deviations can occur as a result of changes in power (load, generation, etc.), These deviations may activate various protection schemes designed to safeguard the system, potentially leading to blackouts. Therefore, assessing the frequency stability of the power system is crucial. The Frequency Security Index (FSI) serves as a metric for evaluating system stability. However, computing the FSI for a specific load change necessitates actual load changes on the system, which is often impractical. This paper introduces a method for calculating the FSI without requiring load changes for all values. A mathematical expression for the FSI is derived, which uses the values of microgrid parameters (such as inertia and damping constant) to compute the FSI for any load change. Subsequently, the parameters that most significantly affect the FSI are identified. Then, the paper introduces a Moving Horizon Estimation (MHE)-based parameter estimation approach, which leverages small perturbations from an energy storage system to estimate the most influential parameters for the FSI. The results show that the FSI calculation with the estimated parameters is more accurate (compared to COI averaged parameters), enabling a more effective state of health monitoring of the microgrid.

More Details

Distributed Energy Resources as an Equity Asset: Lessons Learned from Deployments in Disadvantaged Communities

IEEE Power and Energy Magazine

Bird, Lori; Walker, Carla; Womble, Joseph; Atcitty, Stanley; Trevizan, Rodrigo D.; Concessao, Lanvin; Meenawat, Harsha; Tarekegne, Bethel

For an Energy System to be truly equitable, it should provide affordable and reliable energy services to disadvantaged and underserved populations. Disadvantaged communities often face a combination of economic, social, health, and environmental burdens and may be geographically isolated (e.g., rural communities), which systematically limits their opportunity to fully participate in aspects of economic, social, and civic life.

More Details

Nonlinear Dynamics, Continuation, and Stability Analysis of a Shaft-Bearing Assembly

Conference Proceedings of the Society for Experimental Mechanics Series

Saunders, Brian E.; Kuether, Robert J.; Vasconcellos, Rui M.G.; Abdelkefi, Abdessattar

In this work, the frequency response of a simplified shaft-bearing assembly is studied using numerical continuation. Roller-bearing clearances give rise to contact behavior in the system, and past research has focused on the nonlinear normal modes of the system and its response to shock-type loads. A harmonic balance method (HBM) solver is applied instead of a time integration solver, and numerical continuation is used to map out the system’s solution branches in response to a harmonic excitation. Stability analysis is used to understand the bifurcation behavior and possibly identify numerical or system-inherent anomalies seen in past research. Continuation is also performed with respect to the forcing magnitude, resulting in what are known as S-curves, in an effort to detect isolated solution branches in the system response.

More Details

Laboratory Hail Damage of Photovoltaic Modules: Electroluminescence and High-speed Digital Image Correlation Analysis

Conference Record of the IEEE Photovoltaic Specialists Conference

Digregorio, Steven J.; Braid, Jennifer L.; Shimizu, Michael A.; Hartley, James Y.

Hail poses a significant threat to photovoltaic (PV) systems due to the potential for both cell and glass cracking. This work experimentally investigates hail-related failures in Glass/Backsheet and Glass/Glass PV modules with varying ice ball diameters and velocities. Post-impact Electroluminescence (EL) imaging revealed the damage extent and location, while high-speed Digital Image Correlation (DIC) measured the out-of-plane module displacements. The findings indicate that impacts of 20 J or less result in negligible damage to the modules tested. The thinner glass in Glass/Glass modules cracked at lower impact energies (-25 J) than Glass/Backsheet modules (-40 J). Furthermore, both module types showed cell and glass cracking at lower energies when impacted at the module's edges compared to central impacts. At the time of presentation, we will use DIC to determine if out-of-plane displacements are responsible for the impact location discrepancy and provide more insights into the mechanical response of hail impacted modules. This study provides essential insights into the correlation between impact energy, impact location, displacements, and resulting damage. The findings may inform critical decisions regarding module type, site selection, and module design to contribute to more reliable PV systems.

More Details

Cyclic loading-unloading impacts on salt cavern stability: Implication for underground hydrogen storage

58th US Rock Mechanics / Geomechanics Symposium 2024, ARMA 2024

Chang, Kyung W.; Ross, Tonya S.A.

Underground caverns in salt formations are promising geologic features to store hydrogen (H2) because of salt's extremely low permeability and self-healing behavior.Successful salt-cavern H2 storage schemes must maximize the efficiency of cyclic injection-production while minimizing H2 loss through adjacent damaged salt.The salt cavern storage community, however, has not fully understood the geomechanical behaviors of salt rocks driven by quick operation cycles of H2 injection-production, which may significantly impact the cost-effective storage-recovery performance.Our field-scale generic model captures the impact of combined drag and back stressing on the salt creep behavior corresponding to cycles of compression and extension, which may lead to substantial loss of cavern volumes over time and diminish the cavern performance for H2 storage.Our preliminary findings address that it is essential to develop a new salt constitutive model based on geomechanical tests of site-specific salt rock to probe the cyclic behaviors of salt both beneath and above the dilatancy boundary, including reverse (inverse transient) creep, the Bauschinger effect and fatigue.

More Details

Preparing the MACCS Code for Advanced Reactor Applications

Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation, and Safety, NUTHOS 2024

Garcia, Mariah L.

The MACCS code was created by Sandia National Laboratories for the U.S. Nuclear Regulatory Commission and has been used for emergency planning, level 3 probabilistic risk assessments, consequence analyses and other scientific and regulatory research for over half a century. Specializing in modeling the transport of nuclear material into the environment, MACCS accounts for atmospheric transport and dispersion, wet and dry deposition, probabilistic treatment of meteorology, exposure pathways, varying protective actions for the emergency, intermediate and long-term phases, dosimetry, health effects (including but not limited to population dose, acute radiation injury and increased cancer risk), and economic impacts. Routine updates and recent enhancements to the MACCS code, such as the inclusion of a higher fidelity atmospheric transport and dispersion model, the addition of a new economic impact model, and the application of nearfield modeling, have continuously increased the codes capabilities in consequence analysis. Additionally, investigations of MACCS capabilities for advanced reactor applications have shown that MACCS can provide realistic and informative risk assessments for the new generation of reactor designs. Even so, areas of improvement as well as gaps have been identified that if resolved can increase the usefulness of MACCS in any application regarding a release of nuclear material into the environment.

More Details

COMPARISON OF THREE DESIGN ASSESSMENT APPROACHES FOR A 2-LITER CONTAINMENT VESSEL OF A PLUTONIUM AIR TRANSPORT PACKAGE

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Bignell, John; Gilkey, Lindsay N.; Flores, Gregg; Ammerman, Douglas; Starr, Michael

Sandia National Laboratories (SNL) has completed a comparative evaluation of three design assessment approaches for a 2-liter (2L) capacity containment vessel (CV) of a novel plutonium air transport (PAT) package designed to survive the hypothetical accident condition (HAC) test sequence defined in Title 10 of the United States (US) Code of Federal Regulations (CFR) Part 71.74(a), which includes a 129 meter per second (m/s) impact of the package into an essentially unyielding target. CVs for hazardous materials transportation packages certified in the US are typically designed per the requirements defined in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B&PVC) Section III Division 3 Subsection WB “Class TC Transportation Containments.” For accident conditions, the level D service limits and analysis approaches specified in paragraph WB-3224 are applicable. Data derived from finite element analyses of the 129 m/s impact of the 2L-PAT package were utilized to assess the adequacy of the CV design. Three different CV assessment approaches were investigated and compared, one based on stress intensity limits defined in subparagraph WB-3224.2 for plastic analyses (the stress-based approach), a second based on strain limits defined in subparagraph WB-3224.3, subarticle WB-3700, and Section III Nonmandatory Appendix FF for the alternate strain-based acceptance criteria approach (the strain-based approach), and a third based on failure strain limits derived from a ductile fracture model with dependencies on the stress and strain state of the material, and their histories (the Xue-Wierzbicki (X-W) failure-integral-based approach). This paper gives a brief overview of the 2L-PAT package design, describes the finite element model used to determine stresses and strains in the CV generated by the 129 m/s impact HAC, summarizes the three assessment approaches investigated, discusses the analyses that were performed and the results of those analyses, and provides a comparison between the outcomes of the three assessment approaches.

More Details

A Direct Comparison of Resistivity Models from Helicopter Transient Electromagnetic and Magnetotelluric Datasets Collected over a Blind Geothermal System in East Hawthorne, Nevada, USA

Transactions - Geothermal Resources Council

Folsom, Matthew; Sewell, Steven; Cumming, William; Zimmerman, Jade; Sabin, Andy; Downs, Christine; Hinz, Nick; Winn, Carmen; Schwering, Paul C.

Blind geothermal systems are believed to be common in the Basin and Range province and represent an underutilized source of renewable green energy. Their discovery has historically been by chance but more methodological strategies for exploration of these resources are being developed. One characteristic of blind systems is that they are often overlain by near-surface zones of low-resistivity caused by alteration of the overlying sediments to swelling clays. These zones can be imaged by resistivity-based geophysical techniques to facilitate their discovery and characterization. Here we present a side-by-side comparison of resistivity models produced from helicopter transient electromagnetic (HTEM) and ground-based broadband magnetotelluric (MT) surveys over a previously discovered blind geothermal system with measured shallow temperatures of ~100°C in East Hawthorne, NV. The HTEM and MT data were collected as part of the BRIDGE project, an initiative for improving methodologies for discovering blind geothermal systems. HTEM data were collected and modelled along profiles, and the results suggest the method can resolve the resistivity structure 300 - 500 m deep. A 61-station MT survey was collected on an irregular grid with ~800 m station spacing and modelled in 3D on a rotated mesh aligned with HTEM flight directions. Resistivity models are compared with results from potential fields datasets, shallow temperature surveys, and available temperature gradient data in the area of interest. We find that the superior resolution of the HTEM can reveal near-surface details often missed by MT. However, MT is sensitive to several km deep, can resolve 3D structures, and is thus better suited for single-prospect characterization. We conclude that HTEM is a more practical subregional prospecting tool than is MT, because it is highly scalable and can rapidly discover shallow zones of low resistivity that may indicate the presence of a blind geothermal system. Other factors such as land access and ground disturbance considerations may also be decisive in choosing the best method for a particular prospect. Resistivity methods in general cannot fully characterize the structural setting of a geothermal system, and so we used potential fields and other datasets to guide the creation of a diagrammatic structural model at East Hawthorne.

More Details

Isolated Three-Phase AC-AC Converter with Phase Shift Modulation

Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC

Mueller, Jacob A.; Flicker, Jack D.; Dow, Andrew; Rodriguez, Luciano G.; Palacios II, Felipe

Operation and control of a galvanically isolated three-phase AC-AC converter for solid state transformer applications is described. The converter regulates bidirectional power transfer by phase shifting voltages applied on either side of a high-frequency transformer. The circuit structure and control system are symmetrical around the transformer. Each side operates independently, enabling conversion between AC systems with differing voltage magnitude, phase angle, and frequency. This is achieved in a single conversion stage with low component count and high efficiency. The modulation strategy is discussed in detail and expressions describing the relationship between phase shift and power transfer are presented. Converter operation is demonstrated in a 3 kW hardware prototype.

More Details

Response Limiting in Shaker Shocks

AIAA SciTech Forum and Exposition, 2024

Babuska, Vit; Cap, Jerome S.

The primary goal of any laboratory test is to expose the unit-under-test to conservative realistic representations of a field environment. Satisfying this objective is not always straightforward due to laboratory equipment constraints. For vibration and shock tests performed on shakers over-testing and unrealistic failures can result because the control is a base acceleration and mechanical shakers have nearly infinite impedance. Force limiting and response limiting are relatively standard practices to reduce over-test risks in random-vibration testing. Shaker controller software generally has response limiting as a built-in capability and it is done without much user intervention since vibration control is a closed loop process. Limiting in shaker shocks is done for the same reasons, but because the duration of a shock is only a few milliseconds, limiting is a pre-planned user in the loop process. Shaker shock response limiting has been used for at least 30 years at Sandia National Laboratories, but it seems to be little known or used in industry. This objective of this paper is to re-introduce response limiting for shaker shocks to the aerospace community. The process is demonstrated on the BARBECUE testbed.

More Details

Simulated Performance Effect of Torque Tube Twisting in Single-Axis Tracking PV Arrays

Conference Record of the IEEE Photovoltaic Specialists Conference

Anderson, Kevin S.; Hansen, Clifford

Single-axis solar trackers are typically simulated under the assumption that all modules on a given section of torque tube are at a single orientation. In reality, various mechanical effects can cause twisting along the torque tube length, creating variation in module orientation along the row. Simulation of the impact of this on photovoltaic system performance reveals that the performance loss resulting from torque tube twisting is significant at twists as small as fractions of a degree per module. The magnitude of the loss depends strongly on the design of the photovoltaic module, but does not vary significantly across climates. Additionally, simple tracker control setting tweaks were found to substantially reduce the loss for certain types of twist.

More Details

On Coordinate Encoding in Multifidelity Neural Networks

AIAA SciTech Forum and Exposition, 2024

Villatoro, Cristian; Geraci, Gianluca; Schiavazzi, Daniele E.

Multifidelity emulators have found wide-ranging applications in both forward and inverse problems within the computational sciences. Thanks to recent advancements in neural architectures, they provide significant flexibility for integrating information from multiple models, all while retaining substantial efficiency advantages over single-fidelity methods. In this context, existing neural multifidelity emulators operate by separately resolving the linear and nonlinear correlation between equally parameterized high-and low-fidelity approximants. However, many complex models ensembles in science and engineering applications only exhibit a limited degree of linear correlation between models. In such a case, the effectiveness of these approaches is impeded, i.e., larger datasets are needed to obtain satisfactory predictions. In this work, we present a general strategy that seeks to maximize the linear correlation between two models through input encoding. We showcase the effectiveness of our approach through six numerical test problems, and we show the ability of the proposed multifidelity emulator to accurately recover the high-fidelity model response under an increasing number of quasi-random samples. In our experiments, we show that input encoding produces in many cases emulators with significantly simpler nonlinear correlations. Finally, we demonstrate how the input encoding can be leveraged to facilitate the fusion of information between low-and high-fidelity models with dissimilar parametrization, i.e., situations in which the number of inputs is different between low-and high-fidelity models.

More Details

Understanding the interplay between pilot fuel mixing and auto-ignition chemistry in hydrogen-enriched environment

Proceedings of the Combustion Institute

Lee, Taesong; Rajasegar, Rajavasanth; Srna, Ales

The diesel-piloted dual-fuel compression ignition combustion strategy is well-suited to accelerate the decarbonization of transportation by adopting hydrogen as a renewable energy carrier into the existing internal combustion engine with minimal engine modifications. Despite the simplicity of engine modification, many questions remain unanswered regarding the optimal pilot injection strategy for reliable ignition with minimum pilot fuel consumption. The present study uses a single-cylinder heavy-duty optical engine to explore the phenomenology and underlying mechanisms governing the pilot fuel ignition and the subsequent combustion of a premixed hydrogen-air charge. The engine is operated in a dual-fuel mode with hydrogen premixed into the engine intake charge with a direct pilot injection of n-heptane as a diesel pilot fuel surrogate. Optical diagnostics used to visualize in-cylinder combustion phenomena include high-speed IR imaging of the pilot fuel spray evolution as well as high-speed HCHO* and OH* chemiluminescence as indicators of low-temperature and high-temperature heat release, respectively. Three pilot injection strategies are compared to explore the effects of pilot fuel mass, injection pressure, and injection duration on the probability and repeatability of successful ignition. The thermodynamic and imaging data analysis supported by zero-dimensional chemical kinetics simulations revealed a complex interplay between the physical and chemical processes governing the pilot fuel ignition process in a hydrogen containing charge. Hydrogen strongly inhibits the ignition of pilot fuel mixtures and therefore requires longer injection duration to create zones with sufficiently high pilot fuel concentration for successful ignition. Results show that ignition typically tends to rely on stochastic pockets with high pilot fuel concentration, which results in poor repeatability of combustion and frequent misfiring. This work has improved the understanding on how the unique chemical properties of hydrogen pose a challenge for maximization of hydrogen's energy share in hydrogen dual-fuel engines and highlights a potential mitigation pathway.

More Details

Effects of Proton Irradiation on GaN Vacuum Electron Nanodiodes

IEEE Transactions on Electron Devices

Sapkota, Keshab R.; Vizkelethy, Gyorgy; Burns, George R.; Wang, George T.

Gallium nitride (GaN)-based nanoscale vacuum electron devices, which offer advantages of both traditional vacuum tube operation and modern solid-state technology, are attractive for radiation-hard applications due to the inherent radiation hardness of vacuum electron devices and the high radiation tolerance of GaN. Here, we investigate the radiation hardness of top-down fabricated n-GaN nanoscale vacuum electron diodes (NVEDs) irradiated with 2.5-MeV protons (p) at various doses. We observe a slight decrease in forward current and a slight increase in reverse leakage current as a function of cumulative protons fluence due to a dopant compensation effect. The NVEDs overall show excellent radiation hardness with no major change in electrical characteristics up to a cumulative fluence of 5E14 p/cm2, which is significantly higher than the existing state-of-the-art radiation-hardened devices to our knowledge. The results show promise for a new class of GaN-based nanoscale vacuum electron devices for use in harsh radiation environments and space applications.

More Details

Spatiotemporal Analyses of News Media Coverage on “Nuclear Waste”: A Natural Language Processing Approach

Nuclear Technology

Sweitzer, Matthew D.; Gunda, Thushara

The siting of nuclear waste is a process that requires consideration of concerns of the public. This report demonstrates the significant potential for natural language processing techniques to gain insights into public narratives around “nuclear waste.” Specifically, the report highlights that the general discourse regarding “nuclear waste” within the news media has fluctuated in prevalence compared to “nuclear” topics broadly over recent years, with commonly mentioned entities reflecting a limited variety of geographies and stakeholders. General sentiments within the “nuclear waste” articles appear to use neutral language, suggesting that a scientific or “facts-only” framing of “waste”-related issues dominates coverage; however, the exact nuances should be further evaluated. The implications of a number of these insights about how nuclear waste is framed in traditional media (e.g., regarding emerging technologies, historical events, and specific organizations) are discussed. This report lays the groundwork for larger, more systematic research using, for example, transformer-based techniques and covariance analysis to better understand relationships among “nuclear waste” and other nuclear topics, sentiments of specific entities, and patterns across space and time (including in a particular region). By identifying priorities and knowledge needs, these data-driven methods can complement and inform engagement strategies that promote dialogue and mutual learning regarding nuclear waste.

More Details

Accuracy optimized neural networks do not effectively model optic flow tuning in brain area MSTd

Frontiers in Neuroscience

Layton, Oliver W.; Steinmetz, Scott

Accuracy-optimized convolutional neural networks (CNNs) have emerged as highly effective models at predicting neural responses in brain areas along the primate ventral stream, but it is largely unknown whether they effectively model neurons in the complementary primate dorsal stream. We explored how well CNNs model the optic flow tuning properties of neurons in dorsal area MSTd and we compared our results with the Non-Negative Matrix Factorization (NNMF) model, which successfully models many tuning properties of MSTd neurons. To better understand the role of computational properties in the NNMF model that give rise to optic flow tuning that resembles that of MSTd neurons, we created additional CNN model variants that implement key NNMF constraints – non-negative weights and sparse coding of optic flow. While the CNNs and NNMF models both accurately estimate the observer's self-motion from purely translational or rotational optic flow, NNMF and the CNNs with nonnegative weights yield substantially less accurate estimates than the other CNNs when tested on more complex optic flow that combines observer translation and rotation. Despite its poor accuracy, NNMF gives rise to tuning properties that align more closely with those observed in primate MSTd than any of the accuracy-optimized CNNs. This work offers a step toward a deeper understanding of the computational properties and constraints that describe the optic flow tuning of primate area MSTd.

More Details
Results 1326–1350 of 99,299
Results 1326–1350 of 99,299