Publications

Results 88451–88500 of 99,299

Search results

Jump to search filters

High-level ab initio thermochemical data for halides of chromium, manganese, and iron

Proposed for publication in the Journal of Physical Chemistry A.

Allendorf, Mark

The thermochemistry of the transition-metal fluorides and chlorides MF{sub n} and MCl{sub n} (M = Cr, Mn, Fe; n = 1, 2) has been characterized by high-level ab initio electronic structure methods. Geometries and harmonic vibrational frequencies were computed at the B3LYP level of theory using triple-{zeta} basis sets including diffuse and polarization functions. Heats of formation were computed from isogyric reaction energies at the CCSD(T) level using high-quality basis sets, including corrections for core-valence correlation and scalar relativistic effects. To investigate the possible linearity of the ground states of CrCl{sub 2} and CrF{sub 2}, we performed geometry optimizations for these species at the CCSD(T) level using large basis sets. In both cases, a bent ({sup 5}B{sub 2}) minimum structure was located, but the bent structure is only slightly below the linear form, which was found to be a transition state. For all of the investigated halides, polynomial fits were carried out for the heat capacity and the standard enthalpy and entropy in the 300-3000 K temperature range.

More Details

Mathematical and algorithmic issues in multiphysics coupling

Stone, Charles M.

The modeling of fluid/structure interaction is of growing importance in both energy and environmental applications. Because of the inherent complexity, these problems must be simulated on parallel machines in order to achieve high resolution. The purpose of this research was to investigate techniques for coupling flow and geomechanics in porous media that are suitable for parallel computation. In particular, our main objective was to develop an iterative technique which can be as accurate as a fully coupled model but which allows for robust and efficient coupling of existing complex models (software). A parallel linear elastic module was developed which was coupled to a three phase three-component black oil model in IPARS (Integrated Parallel Accurate Reservoir Simulator). An iterative de-coupling technique was introduced at each time step. The resulting nonlinear iteration involved solving for displacements and flow sequentially. Rock compressibility was used in the flow model to account for the effect of deformation on the pore volume. Convergence was achieved when the mass balance for each component satisfied a given tolerance. This approach was validated by comparison with a fully coupled approach implemented in the British PetroledAmoco ACRES simulator. Another objective of this work was to develop an efficient parallel solver for the elasticity equations. A preconditioned conjugate gradient solver was implemented to solve the algebraic system arising from tensor product linear Galerkin approximations for the displacements. Three preconditioners were developed: LSOR (line successive over-relaxation), block Jacobi, and agglomeration multi-grid. The latter approach involved coarsening the 3D system to 2D and using LSOR as a smoother that is followed by applying geometric multi-grid with SOR (successive over-relaxation) as a smoother. Preliminary tests on a 64-node Beowulf cluster at CSM indicate that the agglomeration multi-grid approach is robust and efficient.

More Details

Apparent slip at the surface of a ball spinning in a concentrated suspension

Proposed for publication in the Journal of Fluid Mechanics.

Mondy, Lisa A.; Grillet, Anne M.; Henfling, John F.

The couple on a ball rotating relative to an otherwise quiescent suspension of comparably-sized, neutrally buoyant spheres is studied both experimentally and numerically. Apparent 'slip' relative to the analytical solution for a sphere spinning in a Newtonian fluid (based upon the viscosity of the suspension) is determined in suspensions with volume fractions c ranging from 0.03 to 0.50. This apparent slip results in a decrease of the measured torque on the spinning ball when the radius of the ball becomes comparable with that of the suspended spheres. Over the range of our data, the slip becomes more pronounced as the concentration c increases. At c = 0.25, three-dimensional boundary-element simulations agree well with the experimental data. Moreover, at c = 0.03, good agreement exists between such calculations and theoretical predictions of rotary slip in dilute suspensions.

More Details

High-sensitivity chemical derivatization NMR analysis for condition monitoring of aged elastomers

Proposed for publication in Macromolecules.

Elliott, Julie M.

An aged polybutadiene-based elastomer was reacted with trifluoroacetic anhydride (TFAA) and subsequently analyzed via 19F NMR spectroscopy. Derivatization between the TFAA and hydroxyl functionalities produced during thermo-oxidative aging was achieved, resulting in the formation of trifluoroester groups on the polymer. Primary and secondary alcohols were confirmed to be the main oxidation products of this material, and the total percent oxidation correlated with data obtained from oxidation rate measurements. The chemical derivatization appears to be highly sensitive and can be used to establish the presence and identity of oxidation products in aged polymeric materials. This methodology represents a novel condition monitoring approach for the detection of chemical changes that are otherwise difficult to analyze.

More Details

Microjoining with a scanning electron microscope

Proposed for publication in Science and Technology of Welding and Joining.

Knorovsky, Gerald A.; Nowak-Neely, Brooke M.; Holm, Elizabeth A.

In the present work the authors describe the adaptation of a standard SEM into a flexible microjoining tool. The system incorporates exceptional control of energy input and its location, environmental cleanliness, part manipulation and especially, part imaging. Beam energetics, modeling of thermal flow in a simple geometry, significant effects of surface energy on molten pools and beam size characterization are treated. Examples of small to micro fusion welds and molten zones produced in a variety of materials (Ni, tool steel, Tophet C, Si) and sizes are given. Future directions are also suggested.

More Details

Shallow donors in GaN

Proposed for publication in Phys. Stat. Sol. (b).

Koleske, Daniel

High-resolution, variable temperature PL experiments were performed in the spectral region associated with recombination processes involving the ground and excited states of the neutral donor bound excitons. High-resolution infrared measurements in combination with high-sensitive SIMS unambiguously identified Si and O shallow donors and yield their ground state binding energies. These binding energies are in excellent agreement with values obtained by the analysis of the two-electron-satellite PL spectra considering the participation of ground and excited state donor bound excitons. This work clarifies conflicting aspects existing in donor identification and the binding energies of the impurities and excitons.

More Details

Growth and design of deep-UV (240-290nm) light emitting diodes using AlGaN alloys

Proposed for publication in Journal of Crystal Growth.

Allerman, A.A.; Crawford, Mary H.; Fischer, Arthur J.; Bogart, Katherine H.A.; Follstaedt, David M.; Provencio, P.N.; Koleske, Daniel

Solid-state light sources emitting at wavelengths less than 300 nm would enable technological advances in many areas such as fluorescence-based biological agent detection, non-line-of-sight communications, water purification, and industrial processing including ink drying and epoxy curing. In this paper, we present our recent progress in the development of LEDs with emission between 237 and 297 nm. We will discuss growth and design issues of deep-UV LEDs, including transport in Si-doped AlGaN layers. The LEDs are designed for bottom emission so that improved heat sinking and light extraction can be achieved by flip chipping. To date, we have demonstrated 2.25 mW of output power at 295 nm from 1 mm x 1 mm LEDs operated at 500 mA. Shorter wavelength LEDs emitting at 276 nm have achieved an output power of 1.3 mW at 400 mA. The heterostructure designs that we have employed have suppressed deep level emission to intensities that are up to 330 x lower than the primary quantum well emission.

More Details

Stereoscopic PIV for crossplane vorticity measurement of a supersonic jet in subsonic compressible crossflow

Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.

A stereoscopic particle image velocimetry (PIV) instrument has been constructed for a transonic wind tunnel to study the interaction created by a supersonic axisymmetric jet exhausting from a flat plate into a subsonic compressible crossflow. Data have been acquired in the crossplane of the interaction at a single station in the farfield, in which the bulk particle motion is aligned with the out-of-plane velocity component. The resulting vector fields distinctly show the strength and location of the induced counter-rotating vortex pair as well as the remnant of the horseshoe vortex that wraps around the jet plume as it first exhausts from the nozzle. Data taken for four different values of the jet-to-freestream dynamic pressure ratio reveal the resulting change in vortex strength, size, and position. Vorticity fields were derived from the in-plane velocity data, but limited convergence of the present small data sets prevented any conclusions about the symmetry of the flowfield. Comparison of the present data is made with two-dimensional PIV data previously acquired in the streamwise plane.

More Details

Effects of coatings on temporal cathodoluminescence quenching in ZnS:Ag,Cl phosphors

Proposed for publication in the Journal of Applied Physics.

Abrams, B.L.

Powder phosphors of ZnS:Ag,Cl coated with SiO{sub 2} (22 or 130 nm nanoparticles), SnO{sub 2} or Al{sub 2}O{sub 3} showed different cathodoluminescent (CL) brightness versus time (temporal CL quenching) behavior as compared to noncoated phosphors. At high current density (e.g., 300-800 {micro}A/cm{sup 2}), the CL emission intensity of coated ZnS:Ag,Cl decayed over the first {approx}15 s of electron beam irradiation, which was postulated to result from a large concentration of nonradiative surface centers generated during surface modification of the phosphor, and from localization of generated electrons at the surface due to primary beam-induced internal electric fields. During the first {approx}15 s of excitation, generated electrons are postulated to be redistributed by this induced internal electric fields, resulting in increased nonradiative surface recombination between electrons and holes. The formation of a nonradiative surface layer either from electron-stimulated surface chemical reactions on coated or from heat treatment of noncoated ZnS:Ag,Cl powder phosphors were shown to affect temporal CL quenching.

More Details

Exceptionally slow rise in differential reflectivity spectra of excitons in GaN : effect of excitation-induced dephasing

Proposed for publication in Physical Review B.

Fischer, Arthur J.

Femtosecond differential reflectivity spectroscopy (DRS) and four-wave mixing (FWM) experiments were performed simultaneously to study the initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats between the A-B excitons were found only for positive time delay in both DRS and FWM experiments. The rise time at negative time delay for the DRS was much slower than the FWM signal or differential transmission spectroscopy at the exciton resonance. A numerical solution of a six band semiconductor Bloch equation model including nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS results from excitation induced dephasing, that is, the strong density dependence of the dephasing time which changes with the laser excitation energy.

More Details

A new algorithm for computing multivariate Gauss-like quadrature points

Taylor, Mark A.

The diagonal-mass-matrix spectral element method has proven very successful in geophysical applications dominated by wave propagation. For these problems, the ability to run fully explicit time stepping schemes at relatively high order makes the method more competitive then finite element methods which require the inversion of a mass matrix. The method relies on Gauss-Lobatto points to be successful, since the grid points used are required to produce well conditioned polynomial interpolants, and be high quality 'Gauss-like' quadrature points that exactly integrate a space of polynomials of higher dimension than the number of quadrature points. These two requirements have traditionally limited the diagonal-mass-matrix spectral element method to use square or quadrilateral elements, where tensor products of Gauss-Lobatto points can be used. In non-tensor product domains such as the triangle, both optimal interpolation points and Gauss-like quadrature points are difficult to construct and there are few analytic results. To extend the diagonal-mass-matrix spectral element method to (for example) triangular elements, one must find appropriate points numerically. One successful approach has been to perform numerical searches for high quality interpolation points, as measured by the Lebesgue constant (Such as minimum energy electrostatic points and Fekete points). However, these points typically do not have any Gauss-like quadrature properties. In this work, we describe a new numerical method to look for Gauss-like quadrature points in the triangle, based on a previous algorithm for computing Fekete points. Performing a brute force search for such points is extremely difficult. A common strategy to increase the numerical efficiency of these searches is to reduce the number of unknowns by imposing symmetry conditions on the quadrature points. Motivated by spectral element methods, we propose a different way to reduce the number of unknowns: We look for quadrature formula that have the same number of points as the number of basis functions used in the spectral element method's transform algorithm. This is an important requirement if they are to be used in a diagonal-mass-matrix spectral element method. This restriction allows for the construction of cardinal functions (Lagrange interpolating polynomials). The ability to construct cardinal functions leads to a remarkable expression relating the variation in the quadrature weights to the variation in the quadrature points. This relation in turn leads to an analytical expression for the gradient of the quadrature error with respect to the quadrature points. Thus the quadrature weights have been completely removed from the optimization problem, and we can implement an exact steepest descent algorithm for driving the quadrature error to zero. Results from the algorithm will be presented for the triangle and the sphere.

More Details

In-situ measurements of the critical thickness for strain relaxation in AlGaN/GaN heterostructures

Proposed for publication in Applied Physics Letters.

Koleske, Daniel; Floro, Jerrold A.; Waldrip, Karen E.

Using in situ wafer-curvature measurements of thin-film stress, we determine the critical thickness for strain relaxation in Al{sub x}Ga{sub 1-x}N/GaN heterostructures with 0.14 {le} x {le} 1. The surface morphology of selected films is examined by atomic force microscopy. Comparison of these measurements with critical-thickness models for brittle fracture and dislocation glide suggests that the onset of strain relaxation occurs by surface fracture for all compositions. Misfit-dislocations follow initial fracture, with slip-system selection occurring under the influence of composition-dependent changes in surface morphology.

More Details

Resonant-phonon-assisted THz quantum cascade lasers with metal-metal waveguides

Proposed for publication in Semiconductor Science and Technology.

Reno, John L.

We report our development of terahertz (THz) quantum-cascade lasers (QCLs) based on two novel features. First, the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO-)phonon scattering. This depopulation mechanism is robust at high temperatures and high injection levels. In contrast to infrared QCLs that also use LO-phonon scattering for depopulation, in our THz lasers the selectivity of the depopulation scattering is achieved through a combination of resonant tunneling and LO-phonon scattering, hence the term resonant phonon. This resonant-phonon scheme allows a highly selective depopulation of the lower radiative level with a sub-picosecond lifetime, while maintaining a relatively long upper level lifetime (>5 ps) that is due to upper-to-ground-state scattering. The second feature of our lasers is that mode confinement is achieved by using a novel double-sided metal-metal waveguide, which yields an essentially unity mode confinement factor and therefore a low total cavity loss at THz frequencies. Based on these two unique features, we have achieved some record performance, including, but not limited to, the highest pulsed operating temperature of 137 K, the highest continuous-wave operating temperature of 97 K, and the longest wavelength of 141 {micro}m (corresponding to 2.1 THz) without the assistance of a magnetic field.

More Details

Progress in Z-Pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories

Sanford, Thomas W.L.; Cuneo, Michael E.; Leeper, Ramon J.; Matzen, M.K.; Mehlhorn, Thomas A.; Slutz, Stephen A.; Nash, Thomas J.; Stygar, William A.; Olson, Richard E.; Olson, Craig L.; Bliss, David E.; Lemke, Raymond W.; Ruiz, Carlos L.; Bailey, James E.; Chandler, Gordon A.

Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions.

More Details

Multispectral rock-type separation and classification

Moya, Mary M.; Fogler, Robert J.

This paper explores the possibility of separating and classifying remotely-sensed multispectral data from rocks and minerals onto seven geological rock-type groups. These groups are extracted from the general categories of metamorphic, igneous and sedimentary rocks. The study is performed under ideal conditions for which the data is generated according to laboratory hyperspectral data for the members, which are, in turn, passed through the Multi-spectral Thermal Imager (MTI) filters yielding 15 bands. The main challenge in separability is the small size of the training data sets, which initially did not permit direct application of Bayesian decision theory. To enable Bayseian classification, the original training data is linearly perturbed with the addition minerals, vegetation, soil, water and other valid impurities. As a result, the size of the training data is significantly increased and accurate estimates of the covariance matrices are achieved. In addition, a set of reduced (five) linearly-extracted canonical features that are optimal in providing the most important information about the data is determined. An alternative nonlinear feature-selection method is also employed based on spectral indices comprising a small subset of all possible ratios between bands. By applying three optimization strategies, combinations of two and three ratios are found that provide reliable separability and classification between all seven groups according to the Bhattacharyya distance. To set a benchmark to which the MTI capability in rock classification can be compared, an optimization strategy is performed for the selection of optimal multispectral filters, other than the MTI filters, and an improvement in classification is predicted.

More Details

Characterization of twinning in electrodeposited Ni-Mn alloys

Proposed for publication in Philosophical Magazine A.

Lucadamo, G.A.; Medlin, Douglas L.; Yang, Nancy; Kelly, James J.; Talin, Albert A.

Twinning is ubiquitous in electroplated metals. Here, we identify and discuss unique aspects of twinning found in electrodeposited Ni-Mn alloys. Previous reports concluded that the twin boundaries effectively refine the grain size, which enhances mechanical strength. Quantitative measurements from transmission electron microscopy (TEM) images show that the relative boundary length in the as-plated microstructure primarily comprises twin interfaces. Detailed TEM characterization reveals a range of length scales associated with twinning beginning with colonies ({approx}1000 nm) down to the width of individual twins, which is typically <50 nm. We also consider the connection between the crystallographic texture of the electrodeposit and the orientation of the twin planes with respect to the plating direction. The Ni-Mn alloy deposits in this work possess a 110-fiber texture. While twinning can occur on {l_brace}111{r_brace} planes either perpendicular or oblique to the plating direction in {l_brace}110{r_brace}-oriented grains, plan-view TEM images show that twins form primarily on those planes parallel to the plating direction. Therefore, grains enclosed by twins and multiply twinned particles are produced. Another important consequence of a high twin density is the formation of large numbers of twin-related junctions. We measure an area density of twin junctions that is comparable to the density of dislocations in a heavily cold-worked metal.

More Details

RITS-3 self-break water switch maintenance

Portillo, Salvador; Hahn, Kelly; Molina, Isidro; Cordova, Steve R.; Maenchen, John E.

The radiographic integrated test stand (RITS-3) is a 5-MV, 160-kA, 70-ns inductive voltage adder accelerator at Sandia National Laboratories used to develop critical understanding of x-ray sources and flash radiographic drivers. On RITS-3 three pulse forming lines (PFLs) are used to drive three inductive voltage adder cavities. Each PFL contains a fast-pulse-charged, self-breakdown annular water switch that is used for initial pulse shaping and timing. Low loss in the switches combined with good synchronization is required for efficient operation of the accelerator. Switch maintenance is closely monitored over time to determine the effects of wear on switch breakdown performance.

More Details

Milepost locations in rural emergency response : the missing piece

Armstrong, Hillary M.

An incident location must be translated into an address that responders can find on the ground. In populated areas it's street name and address number. For sparsely populated areas or highways it's typically road name and nearest milepost number. This is paired with road intersection information to help responders approach the incident as quickly and safely as possible. If responders are new to the area, or for cross-country response, more assistance is needed. If dispatchers had mileposts as points on their maps they could provide this assistance as well as vital information to public safety authorities as the incident unfolds. Mileposts are already universally understood and used. The missing rural response piece is to get milepost locations onto dispatch and control center screens.

More Details

Creating and managing lookmarks in ParaView

Kegelmeyer, William P.

This paper describes the integration of lookmarks into the ParaView visualization tool. Lookmarks are pointers to views of specific parts of a dataset. They were so named because lookmarks are to a visualization tool and dataset as bookmarks are to a browser and the World Wide Web. A lookmark can be saved and organized among other lookmarks within the context of ParaView. Then at a later time, either in the same ParaView session or in a different one, it can be regenerated, displaying the exact view of the data that had previously been saved. This allows the user to pick up where they left off, to continue to adjust the view or otherwise manipulate the data. Lookmarks facilitate collaboration between users who wish to share views of a dataset. They enable more effective data comparison because they can be applied to other datasets. They also serve as a way of organizing a user's data. Ultimately, a lookmark is a time-saving tool that automates the recreation of a complex view of the data.

More Details

Writing reports to facilitate patent applications

Doerry, Armin W.; Libman, George H.

Brief disclosures may often be sufficient for the filing of a Technical Advance with Sandia's Intellectual Property Center, but still be inadequate to facilitate an optimum patent application where more detail and explanation are required. Consequently, the crafting of a patent application may require considerably more additional interaction between the application preparer and the inventors. This inefficiency can be considerably mitigated if the inventors address some critical aspects of a patent application when they write a technical report.

More Details

DOE's effort to reduce truck aerodynamic drag : joint experiments and computations lead to smart design

Dechant, Lawrence; Hassan, Basil

At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the smart design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

More Details

Inductive model development for lithium-ion batteries to predict life and performance

Proposed for publication in the Electrochemical Society Symposium Publication.

Paez, Thomas L.; Jungst, Rudolph G.; Doughty, Daniel H.

Sandia National Laboratories has been conducting studies on performance of laboratory and commercial lithium-ion and other types of electrochemical cells using inductive models [1]. The objectives of these investigations are: (1) To develop procedures and techniques to rapidly determine performance degradation rates while these cells undergo life tests; (2) To model cell voltage and capacity in order to simulate cell performance characteristics under variable load and temperature conditions; (3) To model rechargeable battery degradation under charge/discharge cycles and many other conditions. The inductive model and methodology are particularly useful when complicated cell performance behaviors are involved, which are often difficult to be interpreted from simple empirical approaches. We find that the inductive model can be used effectively: (1) To enable efficient predictions of battery life; (2) To characterize system behavior. Inductive models provide convenient tools to characterize system behavior using experimentally or analytically derived data in an efficient and robust framework. The approach does not require detailed phenomenological development. There are certain advantages unique to this approach. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. We used artificial neural network for inductive modeling, along with ancillary mathematical tools to improve their accuracy. This paper summarizes efforts to use inductive tools for cell and battery modeling. Examples of numerical results will be presented. One of them is related to high power lithium-ion batteries tested under the U.S. Department of Energy Advanced Technology Development Program for hybrid vehicle applications. Sandia National Laboratories is involved in the development of accelerated life testing and thermal abuse tests to enhance the understanding of power and capacity fade issues and predict life of the battery under a nominal use condition. This paper will use power and capacity fade behaviors of a Ni-oxide-based lithium-ion battery system to illustrate how effective the inductive model can interpret the cell behavior and provide predictions of life. We will discuss the analysis of the fading behavior associated with the cell performance and explain how the model can predict cell performance.

More Details

A characterization of a hybrid and dynamic partitioner for SAMR applications

Steensland, Johan

Significantly improving the scalability of large structured adaptive mesh refinement (SAMR) applications is challenging. It requires sophisticated capabilities for using the underlying parallel computer's resources in the most efficient way. This is non-trivial, since the basic conditions for how to allocate the resources change dramatically during run-time due to the dynamics inherent in these applications. This paper presents a first characterization of a hybrid and dynamic partitioner for parallel SAMR applications. Specifically, we investigate parameter settings for trade-offs like communication vs. load balance and speed vs. quality. The key contribution is that the characterization shows that the partitioner is able to respond accurately to stimuli from system and application state, and hence adapt to various SAMR scenarios. This potentially reduces the run-time for large SAMR applications.

More Details
Results 88451–88500 of 99,299
Results 88451–88500 of 99,299