Lankiewicz, Thomas S.; Choudhary, Hemant; Gao, Yu; Amer, Bashar; Lillington, Stephen P.; Leggieri, Patrick A.; Brown, Jennifer L.; Swift, Candice L.; Lipzen, Anna; Na, Hyunsoo; Amirebrahimi, Mojgan; Theodorou, Michael K.; Baidoo, Edward E.K.; Barry, Kerrie; Grigoriev, Igor V.; Timokhin, Vitaliy I.; Gladden, John M.; Singh, Seema S.; Mortimer, Jenny C.; Ralph, John; Simmons, Blake A.; Singer, Steven W.; O'Malley, Michelle A.
Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.
For computational physics simulations, code verification plays a major role in establishing the credibility of the results by assessing the correctness of the implementation of the underlying numerical methods. In computational electromagnetics, surface integral equations, such as the method-of-moments implementation of the magnetic-field integral equation, are frequently used to solve Maxwell's equations on the surfaces of electromagnetic scatterers. These electromagnetic surface integral equations yield many code-verification challenges due to the various sources of numerical error and their possible interactions. In this paper, we provide approaches to separately measure the numerical errors arising from these different error sources. We demonstrate the effectiveness of these approaches for cases with and without coding errors.
Pitting corrosion was evaluated on stainless steels 304H, 304, and 316L the surfaces of which had ASTM seawater printed on them as a function of surface roughness after exposure to an exemplar realistic atmospheric diurnal cycle for up to one year. Methods to evaluate pitting damage included optical imaging, scanning electron microscopy imaging, profilometry analysis, and polarization scans. The developed cyclic exposure environment did not significantly influence pitting morphology nor depth in comparison to prior static exposure environments. Cross-hatching was observed in a majority of pits for all material compositions with the roughest surface finish (#4 finish) and in all surface finishes for the 304H composition. Evidence is provided that cross-hatched pit morphologies are caused by slip bands produced during the grinding process for the #4 finish or by material processing. Additionally, micro-cracking was observed in pits formed on samples with the #4 surface finish and was greatly reduced or absent for pits formed on samples with smooth surface finishes. This suggests that both a low RH leading to an MgCl2-dominated environment and a rough surface containing significant residual stress are necessary for micro-cracking. Finally, the use of various characterization techniques and cross sectioning was employed to both qualitatively and quantitatively assess pitting damage across all SS compositions and surface finishes.
We report ion trapping in crystalline domains of electrochemical transistors can be used to create a device capable of both volatile and non-volatile operation.
The marine energy (ME) industry historically lacked a standardized data processing toolkit for common tasks such as data ingestion, quality control, and visualization. The marine and hydrokinetic toolkit (MHKiT) solved this issue by providing a public software deployment (open-source and free) toolkit for the ME industry to store and maintain commonly used functionality for wave, tidal, and river energy. This paper demonstrates an initial model verification study in MHKiT. Using Delft3D, a numerical model of the Tanana River Test Site (TRTS) at Nenana, Alaska was created. Field data from the site was collected using an Acoustic Doppler Current Profiler (ADCP) at the proposed Current Energy Converter (CEC) locations. MHKiT is used to process model simulations from Delft3D and compare them to the transect data from the ADCP measurements at TRTS. The ability to use a single tool to process simulation and field data demonstrates the ease at which the ME industry can obtain results and collaborate across specialties, reducing errors and increasing efficiency.
Software reverse engineering (RE) requires analysts to closely read and make decisions about code. Little is known about what makes an analyst successful, making it difficult to train new analysts or design tools to augment existing ones. The goal of this project was to quantify the eye movement behaviors supporting RE and code comprehension more generally. We applied eye-tracking methods from the language comprehension literature to understand where analysts direct their attention over time when completing tasks (e.g., function identification, bug detection). Across three studies, we manipulated aspects of code hypothesized to impact comprehension (e.g., variable name meaningfulness, code complexity) and presentation methods (e.g., line-by-line, free viewing, gaze-contingent moving window) to understand effects on accuracy and gaze patterns. Results showed clear benefits of meaningful variable names, and effects of expertise on global and line-specific viewing patterns. Findings could inspire empirically-supported tool or analytic adaptations that help to reduce analyst workload.
This report describes the creation process and final content of a spectral irradiance dataset for Albuquerque, New Mexico accompanied by a set of spectral response measurements for modules deployed at the same location. The spectral irradiance measurements were made using horizontally mounted spectroradiometers; therefore, they represent global horizontal irradiance. The dataset combines non-continuous spectroradiometer and weather measurements from a two-year period into a single calendar year. The data files are accompanied by extensive metadata as well as example calculations and graphs to demonstrate the potential uses of this database. The spectral response measurements were carried out by the National Renewable Energy Laboratory using 12 commercial silicon modules types that are undergoing long-term evaluation at Sandia National Laboratories in Albuquerque.