Publications

Results 3226–3250 of 99,299

Search results

Jump to search filters

Analytical solution and parameter estimation for heat of wetting and vapor adsorption during spontaneous imbibition in tuff

International Journal of Heat and Mass Transfer

Good, Forest T.; Kuhlman, Kristopher L.; Laforce, Tara C.; Paul, Matthew J.; Heath, Jason E.

An analytical expression is derived for the thermal response observed during spontaneous imbibition of water into a dry core of zeolitic tuff. Sample tortuosity, thermal conductivity, and thermal source strength are estimated from fitting an analytical solution to temperature observations during a single laboratory test. The closed-form analytical solution is derived using Green's functions for heat conduction in the limit of “slow” water movement; that is, when advection of thermal energy with the wetting front is negligible. The solution has four free fitting parameters and is efficient for parameter estimation. Laboratory imbibition data used to constrain the model include a time series of the mass of water imbibed, visual location of the wetting front through time, and temperature time series at six locations. The thermal front reached the end of the core hours before the visible wetting front. Thus, the predominant form of heating during imbibition in this zeolitic tuff is due to vapor adsorption in dry zeolitic rock ahead of the wetting front. The separation of the wetting front and thermal front in this zeolitic tuff is significant, compared to wetting front behavior of most materials reported in the literature. This work is the first interpretation of a thermal imbibition response to estimate transport (tortuosity) and thermal properties (including thermal conductivity) from a single laboratory test.

More Details

Global horizontal spectral irradiance and module spectral response measurements: an open dataset for PV research

Driesse, Anton; Theristis, Marios; Stein, Joshua

This report describes the creation process and final content of a spectral irradiance dataset for Albuquerque, New Mexico accompanied by a set of spectral response measurements for modules deployed at the same location. The spectral irradiance measurements were made using horizontally mounted spectroradiometers; therefore, they represent global horizontal irradiance. The dataset combines non-continuous spectroradiometer and weather measurements from a two-year period into a single calendar year. The data files are accompanied by extensive metadata as well as example calculations and graphs to demonstrate the potential uses of this database. The spectral response measurements were carried out by the National Renewable Energy Laboratory using 12 commercial silicon modules types that are undergoing long-term evaluation at Sandia National Laboratories in Albuquerque.

More Details

Using Eye-Tracking to Quantify Reverse Engineering Expertise

Stites, Mallory C.; Matzen, Laura E.; Rodhouse, Kathryn N.; Howell, Breannan C.; Rogers, Alisa

Software reverse engineering (RE) requires analysts to closely read and make decisions about code. Little is known about what makes an analyst successful, making it difficult to train new analysts or design tools to augment existing ones. The goal of this project was to quantify the eye movement behaviors supporting RE and code comprehension more generally. We applied eye-tracking methods from the language comprehension literature to understand where analysts direct their attention over time when completing tasks (e.g., function identification, bug detection). Across three studies, we manipulated aspects of code hypothesized to impact comprehension (e.g., variable name meaningfulness, code complexity) and presentation methods (e.g., line-by-line, free viewing, gaze-contingent moving window) to understand effects on accuracy and gaze patterns. Results showed clear benefits of meaningful variable names, and effects of expertise on global and line-specific viewing patterns. Findings could inspire empirically-supported tool or analytic adaptations that help to reduce analyst workload.

More Details

Code-verification techniques for the method-of-moments implementation of the magnetic-field integral equation

Journal of Computational Physics

Freno, Brian A.; Matula, Neil

For computational physics simulations, code verification plays a major role in establishing the credibility of the results by assessing the correctness of the implementation of the underlying numerical methods. In computational electromagnetics, surface integral equations, such as the method-of-moments implementation of the magnetic-field integral equation, are frequently used to solve Maxwell's equations on the surfaces of electromagnetic scatterers. These electromagnetic surface integral equations yield many code-verification challenges due to the various sources of numerical error and their possible interactions. In this paper, we provide approaches to separately measure the numerical errors arising from these different error sources. We demonstrate the effectiveness of these approaches for cases with and without coding errors.

More Details

Acoustic Research under the Source Physics Experiment

Dannemann Dugick, Fransiska K.; Wilson, Trevor C.; Bowman, Daniel; Kim, Keehoon; Blom, Philip S.

The Source Physics Experiment series is a long-term research and development (R&D) effort under the U.S. Department of Energy’s National Nuclear Security Administration focused on improving the physical understanding of how chemical explosions generate seismoacoustic signals. Beginning in 2011, a series of subsurface chemical explosions in two different and highly contrasting geologies were conducted at the Nevada National Security Site in Nevada, USA with the objective of improving simulation and modeling approaches to explosion identification, yield estimation and other monitoring applications. The two executed phases of the series provide new explosion signature source data from a wide range of geophysical diagnostic equipment; recorded data from the test series is now openly available to the broader seismoacoustic community. This manuscript details the executed test series, deployed seismoacoustic networks, and summarizes major scientific achievements utilizing recorded signatures from the explosive tests.

More Details

Influence of Realistic, Cyclic Atmospheric Cycles on the Pitting Corrosion of Austenitic Stainless Steels

Journal of the Electrochemical Society

Schaller, Rebecca S.; Karasz, Erin K.; Bryan, C.R.; Snow, J.; Taylor, Jason M.; Kelly, R.G.; Montoya, T.

Pitting corrosion was evaluated on stainless steels 304H, 304, and 316L the surfaces of which had ASTM seawater printed on them as a function of surface roughness after exposure to an exemplar realistic atmospheric diurnal cycle for up to one year. Methods to evaluate pitting damage included optical imaging, scanning electron microscopy imaging, profilometry analysis, and polarization scans. The developed cyclic exposure environment did not significantly influence pitting morphology nor depth in comparison to prior static exposure environments. Cross-hatching was observed in a majority of pits for all material compositions with the roughest surface finish (#4 finish) and in all surface finishes for the 304H composition. Evidence is provided that cross-hatched pit morphologies are caused by slip bands produced during the grinding process for the #4 finish or by material processing. Additionally, micro-cracking was observed in pits formed on samples with the #4 surface finish and was greatly reduced or absent for pits formed on samples with smooth surface finishes. This suggests that both a low RH leading to an MgCl2-dominated environment and a rough surface containing significant residual stress are necessary for micro-cracking. Finally, the use of various characterization techniques and cross sectioning was employed to both qualitatively and quantitatively assess pitting damage across all SS compositions and surface finishes.

More Details
Results 3226–3250 of 99,299
Results 3226–3250 of 99,299