Publications

Results 1–25 of 107

Search results

Jump to search filters

Neuromorphic Population Evaluation using the Fugu Framework

ACM International Conference Proceeding Series

Severa, William M.; Cardwell, Suma G.; Krygier, Michael K.; Rothganger, Fredrick R.; Vineyard, Craig M.

Evolutionary algorithms have been shown to be an effective method for training (or configuring) spiking neural networks. There are, however, challenges to developing accessible, scalable, and portable solutions. We present an extension to the Fugu framework that wraps the NEAT framework, bringing evolutionary algorithms to Fugu. This approach provides a flexible and customizable platform for optimizing network architectures, independent of fitness functions and input data structures. We leverage Fugu's computational graph approach to evaluate all members of a population in parallel. Additionally, as Fugu is platform-agnostic, this population can be evaluated in simulation or on neuromorphic hardware. We demonstrate our extension using several classification and agent-based tasks. One task illustrates how Fugu integration allows for spiking pre-processing to lower the search space dimensionality. We also provide some benchmark results using the Intel Loihi platform.

More Details

Stochastic Neuromorphic Circuits for Solving MAXCUT

Proceedings - 2023 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2023

Theilman, Bradley; Wang, Yipu W.; Parekh, Ojas D.; Severa, William M.; Smith, John D.; Aimone, James B.

Finding the maximum cut of a graph (MAXCUT) is a classic optimization problem that has motivated parallel algorithm development. While approximate algorithms to MAXCUT offer attractive theoretical guarantees and demonstrate compelling empirical performance, such approximation approaches can shift the dominant computational cost to the stochastic sampling operations. Neuromorphic computing, which uses the organizing principles of the nervous system to inspire new parallel computing architectures, offers a possible solution. One ubiquitous feature of natural brains is stochasticity: the individual elements of biological neural networks possess an intrinsic randomness that serves as a resource enabling their unique computational capacities. By designing circuits and algorithms that make use of randomness similarly to natural brains, we hypothesize that the intrinsic randomness in microelectronics devices could be turned into a valuable component of a neuromorphic architecture enabling more efficient computations. Here, we present neuromorphic circuits that transform the stochastic behavior of a pool of random devices into useful correlations that drive stochastic solutions to MAXCUT. We show that these circuits perform favorably in comparison to software solvers and argue that this neuromorphic hardware implementation provides a path for scaling advantages. This work demonstrates the utility of combining neuromorphic principles with intrinsic randomness as a computational resource for new computational architectures.

More Details

Stochastic Neuromorphic Circuits for Solving MAXCUT

Proceedings - 2023 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2023

Theilman, Bradley; Wang, Yipu W.; Parekh, Ojas D.; Severa, William M.; Smith, John D.; Aimone, James B.

Finding the maximum cut of a graph (MAXCUT) is a classic optimization problem that has motivated parallel algorithm development. While approximate algorithms to MAXCUT offer attractive theoretical guarantees and demonstrate compelling empirical performance, such approximation approaches can shift the dominant computational cost to the stochastic sampling operations. Neuromorphic computing, which uses the organizing principles of the nervous system to inspire new parallel computing architectures, offers a possible solution. One ubiquitous feature of natural brains is stochasticity: the individual elements of biological neural networks possess an intrinsic randomness that serves as a resource enabling their unique computational capacities. By designing circuits and algorithms that make use of randomness similarly to natural brains, we hypothesize that the intrinsic randomness in microelectronics devices could be turned into a valuable component of a neuromorphic architecture enabling more efficient computations. Here, we present neuromorphic circuits that transform the stochastic behavior of a pool of random devices into useful correlations that drive stochastic solutions to MAXCUT. We show that these circuits perform favorably in comparison to software solvers and argue that this neuromorphic hardware implementation provides a path for scaling advantages. This work demonstrates the utility of combining neuromorphic principles with intrinsic randomness as a computational resource for new computational architectures.

More Details

A review of non-cognitive applications for neuromorphic computing

Neuromorphic Computing and Engineering

Aimone, James B.; Date, Prasanna; Fonseca-Guerra, Gabriel A.; Hamilton, Kathleen E.; Henke, Kyle; Kay, Bill; Kenyon, Garrett T.; Kulkarni, Shruti R.; Parsa, Maryam; Schuman, Catherine D.; Severa, William M.; Smith, John D.

Though neuromorphic computers have typically targeted applications in machine learning and neuroscience (‘cognitive’ applications), they have many computational characteristics that are attractive for a wide variety of computational problems. In this work, we review the current state-of-the-art for non-cognitive applications on neuromorphic computers, including simple computational kernels for composition, graph algorithms, constrained optimization, and signal processing. We discuss the advantages of using neuromorphic computers for these different applications, as well as the challenges that still remain. The ultimate goal of this work is to bring awareness to this class of problems for neuromorphic systems to the broader community, particularly to encourage further work in this area and to make sure that these applications are considered in the design of future neuromorphic systems.

More Details

Neural Mini-Apps as a Tool for Neuromorphic Computing Insight

ACM International Conference Proceeding Series

Vineyard, Craig M.; Cardwell, Suma G.; Chance, Frances S.; Musuvathy, Srideep M.; Rothganger, Fredrick R.; Severa, William M.; Smith, John D.; Teeter, Corinne M.; Wang, Felix W.; Aimone, James B.

Neuromorphic computing (NMC) is an exciting paradigm seeking to incorporate principles from biological brains to enable advanced computing capabilities. Not only does this encompass algorithms, such as neural networks, but also the consideration of how to structure the enabling computational architectures for executing such workloads. Assessing the merits of NMC is more nuanced than simply comparing singular, historical performance metrics from traditional approaches versus that of NMC. The novel computational architectures require new algorithms to make use of their differing computational approaches. And neural algorithms themselves are emerging across increasing application domains. Accordingly, we propose following the example high performance computing has employed using context capturing mini-apps and abstraction tools to explore the merits of computational architectures. Here we present Neural Mini-Apps in a neural circuit tool called Fugu as a means of NMC insight.

More Details

Neuromorphic scaling advantages for energy-efficient random walk computations

Nature Electronics

Smith, John D.; Hill, Aaron J.; Reeder, Leah E.; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Severa, William M.; Aimone, James B.

Neuromorphic computing, which aims to replicate the computational structure and architecture of the brain in synthetic hardware, has typically focused on artificial intelligence applications. What is less explored is whether such brain-inspired hardware can provide value beyond cognitive tasks. Here we show that the high degree of parallelism and configurability of spiking neuromorphic architectures makes them well suited to implement random walks via discrete-time Markov chains. These random walks are useful in Monte Carlo methods, which represent a fundamental computational tool for solving a wide range of numerical computing tasks. Using IBM’s TrueNorth and Intel’s Loihi neuromorphic computing platforms, we show that our neuromorphic computing algorithm for generating random walk approximations of diffusion offers advantages in energy-efficient computation compared with conventional approaches. We also show that our neuromorphic computing algorithm can be extended to more sophisticated jump-diffusion processes that are useful in a range of applications, including financial economics, particle physics and machine learning.

More Details

Exploring SAR ATR with Neural Networks: Going Beyond Accuracy

Proceedings of SPIE - The International Society for Optical Engineering

Melzer, Ryan D.; Severa, William M.; Vineyard, Craig M.

Deep neural networks have recently demonstrated state-of-the-art accuracy on public Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) benchmark datasets. While attaining competitive accuracy on benchmark datasets is a necessary feature, it is important to characterize other facets of new SAR ATR algorithms. We extend this recent work by demonstrating not only improved state-of-the-art accuracy, but that contemporary deep neural networks can achieve several algorithmic traits beyond competitive accuracy which are necessitated by operational deployment scenarios. First, we employ several saliency map algorithms to provide explainability and insight into understanding black-box classiffer decisions. Second, we collect and implement numerous data augmentation routines and training improvements both from the computer vision literature and specffc to SAR ATR data in order to further improve model domain adaptation performance from synthetic to measured data, achieving a 99.26% accuracy on SAMPLE validation with a simple network architecture. Finally, we survey model reproducibility and performance variability under domain adaptation from synthetic to measured data, demonstrating potential consequences of training on only synthetic data.

More Details

Neuromorphic Graph Algorithms

Parekh, Ojas D.; Wang, Yipu W.; Ho, Yang H.; Phillips, Cynthia A.; Pinar, Ali P.; Aimone, James B.; Severa, William M.

Graph algorithms enable myriad large-scale applications including cybersecurity, social network analysis, resource allocation, and routing. The scalability of current graph algorithm implementations on conventional computing architectures are hampered by the demise of Moore’s law. We present a theoretical framework for designing and assessing the performance of graph algorithms executing in networks of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze new spiking algorithms for shortest path and dynamic programming problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation. For fair and rigorous comparison with conventional algorithms and architectures, which is challenging but paramount, we develop new models of data-movement in conventional computing architectures. This allows us to prove polynomial-factor advantages, even when we assume a SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a rigorous asymptotic computational advantage for neuromorphic computing.

More Details

Energy Efficient Computing R&D Roadmap Outline for Automated Vehicles

Aitken, Rob; Nakahira, Yorie; Strachan, John P.; Bresniker, Kirk; Young, Ian; Li, Zhiyong L.; Klebanoff, Leonard E.; Burchard, Carrie L.; Kumar, Suhas K.; Marinella, Matthew J.; Severa, William M.; Talin, A.A.; Vineyard, Craig M.; Mailhiot, Christian M.; Dick, Robert; Lu, Wei; Mogill, Jace

Automated vehicles (AV) hold great promise for improving safety, as well as reducing congestion and emissions. In order to make automated vehicles commercially viable, a reliable and highperformance vehicle-based computing platform that meets ever-increasing computational demands will be key. Given the state of existing digital computing technology, designers will face significant challenges in meeting the needs of highly automated vehicles without exceeding thermal constraints or consuming a large portion of the energy available on vehicles, thus reducing range between charges or refills. The accompanying increases in energy for AV use will place increased demand on energy production and distribution infrastructure, which also motivates increasing computational energy efficiency.

More Details

Provable advantages for graph algorithms in spiking neural networks

Annual ACM Symposium on Parallelism in Algorithms and Architectures

Aimone, James B.; Ho, Yang H.; Parekh, Ojas D.; Phillips, Cynthia A.; Pinar, Ali P.; Severa, William M.; Wang, Yipu W.

We present a theoretical framework for designing and assessing the performance of algorithms executing in networks consisting of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze neuromorphic graph algorithms, focusing on shortest path problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation, and we develop data-movement lower bounds for conventional algorithms. A fair and rigorous comparison with conventional algorithms and architectures is challenging but paramount. We prove a polynomial-factor advantage even when we assume an SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a provable asymptotic computational advantage for neuromorphic computing.

More Details

Low-Power Deep Learning Inference using the SpiNNaker Neuromorphic Platform

Vineyard, Craig M.; Dellana, Ryan A.; Aimone, James B.; Severa, William M.

n this presentation we will discuss recent results on using the SpiNNaker neuromorphic platform (48-chip model) for deep learning neural network inference. We use the Sandia Labs developed Whet stone spiking deep learning library to train deep multi-layer perceptrons and convolutional neural networks suitable for the spiking substrate on the neural hardware architecture. By using the massively parallel nature of SpiNNaker, we are able to achieve, under certain network topologies, substantial network tiling and consequentially impressive inference throughput. Such high-throughput systems may have eventual application in remote sensing applications where large images need to be chipped, scanned, and processed quickly. Additionally, we explore complex topologies that push the limits of the SpiNNaker routing hardware and investigate how that impacts mapping software-implemented networks to on-hardware instantiations.

More Details
Results 1–25 of 107
Results 1–25 of 107