Publications

Results 51–100 of 154

Search results

Jump to search filters

Implementing and diagnosing magnetic flux compression on the Z pulsed power accelerator

Mcbride, Ryan; Bliss, David E.; Gomez, Matthew R.; Hansen, Stephanie B.; Martin, Matthew R.; Jennings, Christopher A.; Slutz, Stephen A.; Rovang, Dean C.; Knapp, P.F.; Schmit, Paul; Awe, Thomas J.; Hess, Mark H.; Lemke, Raymond W.; Foulk, James W.; Lamppa, Derek C.; Jobe, Marc R.L.; Fang, Lu; Hahn, Kelly; Chandler, Gordon A.; Cooper, Gary; Ruiz, Carlos L.; Robertson, G.K.; Cuneo, Michael E.; Sinars, Daniel; Tomlinson, Kurt; Smith, Gary; Paguio, Reny; Intrator, Tom; Weber, Thomas; Greenly, John

We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing and fabricating novel micro B-dot probes to measure B z ( t ) inside of an imploding liner. In one approach, the micro B-dot loops were fabricated on a printed circuit board (PCB). The PCB was then soldered to off-the-shelf 0.020- inch-diameter semi-rigid coaxial cables, which were terminated with standard SMA connectors. These probes were recently tested using the COBRA pulsed power generator (0-1 MA in 100 ns) at Cornell University. In another approach, we are planning to use new multi-material 3D printing capabilities to fabricate novel micro B-dot packages. In the near future, we plan to 3D print these probes and then test them on the COBRA generator. With successful operation demonstrated at 1-MA, we will then make plans to use these probes on a 20-MA Z experiment.

More Details

Fusion-Neutron Measurements for Magnetized Liner Inertial Fusion Experiments on the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Laser-Fuel Coupling Studies for MagLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Schmit, Paul; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

IEEE Transactions on Plasma Science

Ampleford, David J.; Bland, Bland; Jennings, Christopher A.; Lebedev, S.V.; Chittenden, J.P.; Cuneo, Michael E.; Mcbride, Ryan; Jones, Brent M.; Hall, G.N.; Suzuki-Vidal, F.; Serrano, Jason D.; Bott-Suzuki, S.C.

Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

More Details

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

Mcbride, Ryan; Slutz, Stephen A.; Sinars, Daniel; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle; Rovang, Dean C.; Lamppa, Derek C.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schmit, Paul; Knapp, P.F.; Awe, Thomas J.; Jennings, Christopher A.; Martin, Matthew R.; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, Michael E.

Abstract not provided.

Low Adiabat Compression of Liquid Deuterium Filled Cylindrical Liners to 0.1?2 Gbar

Physical Review Letters

Knapp, P.F.; Martin, Matthew; Dalton, Devon; Foulk, James W.; Davis, Jean-Paul; Romero, Dustin H.; Cochrane, Kyle; Loisel, Guillaume P.; Mattsson, Thomas; Mcbride, Ryan; Sinars, Daniel

We report on experiments where cylindrical beryllium liners filled with liquid deuterium were compressed to extreme pressure and density with current pulse shaping. In one set of experiments the pressure at stagnation is inferred to be & 100 Mbar using penetrating radiography. A peak liner convergence ratio (initial radius over final radius) of 7.6 was measured resulting in an average deuterium density of 10 g=cm3 and areal density of 0.45 g=cm2. The stagnation shock propagating radially outward through the liner wall was directly measured with a strength of ≈ 120 Mbar. In a second set of experiments the liner was imploded to a peak convergence of 19 resulting in a density of 55 g=cm3 and areal density of 0.5 g=cm2. The pressure at stagnation in this experiment is estimated to be 2 Gbar. This platform enables the study of high-pressure, high-density, implosion deceleration and stagnation dynamics at spatial scales that are readily diagnosable (R ~ 0.1 -- 0.4 mm). Thus, these experiments are directly relevant to both Inertial Con nement Fusion and the study of material properties under extreme conditions.

More Details

Experimental Progress in Magnetized Liner Inertial Fusion (MagLIF)

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Peterson, K.J.; Hansen, Stephanie B.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Recent progress in Magnetized Liner Inertial Fusion (MagLIF) experiments

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Harding, Eric H.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Magnetized Liner Inertial Fusion on the Z Pulsed-Power Accelerator

Mcbride, Ryan; Sinars, Daniel; Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Awe, Thomas J.; Peterson, K.J.; Knapp, P.F.; Schmit, Paul; Rovang, Dean C.; Geissel, Matthias; Vesey, Roger A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew R.; Lemke, Raymond W.; Hahn, Kelly; Harding, Eric H.; Cuneo, Michael E.; Porter, John L.; Rochau, G.A.; Stygar, William A.

Abstract not provided.

LEH Transmission and Early Fuel Heating for MagLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Schmit, Paul; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, J.W.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Diagnosing magnetized liner inertial fusion experiments on Z

Physics of Plasmas

Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Awe, Thomas J.; Sinars, Daniel; Harding, Eric H.; Jennings, Christopher A.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Schroen, D.G.; Tomlinson, K.; Ryutov, D.

Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

More Details

A semi-analytic model of magnetized liner inertial fusion

Physics of Plasmas

Mcbride, Ryan; Slutz, Stephen A.

Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

More Details

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

Physics of Plasmas

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark C.; Hess, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger A.

In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

More Details

Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

Sandia journal manuscript; Not yet accepted for publication

Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Peterson, K.J.; Porter, John L.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

More Details

Experimental verification of the Magnetized Liner Inertial Fusion (MagLIF) concept

ICOPS/BEAMS 2014 - 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams

Gomez, Matthew R.; Slutz, S.A.; Sefkow, Adam B.; Awe, T.J.; Chandler, Gordon A.; Cuneo, Michael E.; Geissel, Matthias; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Jennings, C.A.; Knapp, P.F.; Lamppa, Derek C.; Martin, M.R.; Mcbride, Ryan; Peterson, K.J.; Porter, J.L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Schmit, Paul; Sinars, Daniel; Smith, Ian C.

Abstract not provided.

Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

Physical Review Special Topics - Accelerators and Beams

Waisman, E.M.; Mcbride, Ryan; Cuneo, Michael E.; Wenger, D.F.; Fowler, W.E.; Johnson, W.A.; Basilio, Lorena I.; Coats, Rebecca S.; Jennings, C.A.; Sinars, Daniel; Vesey, Roger A.; Jones, Brent M.; Ampleford, David J.; Lemke, Raymond W.; Martin, M.R.; Schrafel, P.C.; Lewis, S.A.; Moore, James M.; Savage, Mark E.; Stygar, William A.

Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R.D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient transmission of large currents through the MITLs on Z. Taken together, the two studies demonstrate the overall efficient delivery of very large electrical powers through the MITLs on Z.

More Details

Pulsed-coil magnet systems for applying 10-30 Tesla Fields to cm-scale targets on Sandia's Z facility

Review of Scientific Instruments

Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael E.; Owen, Albert C.; Mckenney, John; Johnson, Drew; Radovich, Shawn; Kaye, Ronald J.; Mcbride, Ryan; Alexander, Charles S.; Awe, Thomas J.; Slutz, Stephen A.; Sefkow, Adam B.; Haill, Thomas A.; Jones, Peter; Argo, Jeffrey W.; Dalton, Devon; Robertson, G.K.; Waisman, Eduardo M.; Sinars, Daniel; Meissner, Joel; Milhous, Mark; Nguyen, Doan; Mielke, Chuck

We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

More Details

Adaptive Beam Smoothing with Plasma-Pinholes for Laser-Entrance-Hole Transmission Studies

Geissel, Matthias; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Kimmel, Mark; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, John W.; Porter, John L.

Abstract not provided.

Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

Physical Review Letters

Gomez, Matthew R.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Hess, Mark H.; Slutz, Stephen A.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Sefkow, Adam B.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

More Details

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion Experiments on the Z Facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Modified 3D-helix-like instability structure for imploding Z-pinch liners that are premagnetized with a uniform axial field

Awe, Thomas J.; Jennings, Christopher A.; Mcbride, Ryan; Cuneo, Michael E.; Lamppa, Derek C.; Martin, Matthew R.; Rovang, Dean C.; Sinars, Daniel; Slutz, Stephen A.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Herrmann, Mark H.; Jones, Michael; Knapp, P.F.; Mckenney, John; Peterson, K.J.; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Schmit, Paul; Sefkow, Adam B.; Stygar, William A.; Vesey, Roger A.; Yu, Edmund; Tomlinson, Kurt; Schroen, Diana G.

Abstract not provided.

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion experiments on the Z facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Results Progress and Plans for Magnetized Liner Inertial Fusion (MagLIF) on Z

Peterson, K.J.; Slutz, Stephen A.; Sinars, Daniel; Sefkow, Adam B.; Gomez, Matthew R.; Awe, Thomas J.; Harvey-Thompson, Adam J.; Geissel, Matthias; Schmit, Paul; Smith, Ian C.; Mcbride, Ryan; Rovang, Dean C.; Knapp, P.F.; Hansen, Stephanie B.; Jennings, Christopher A.; Harding, Eric H.; Porter, John L.; Vesey, Roger A.; Blue, Brent E.; Schroen, Diana G.; Tomlinson, Kurt

Abstract not provided.

Modified helix-like instability structure on imploding z-pinch liners that are pre-imposed with a uniform axial magnetic field

Physics of Plasmas

Awe, Thomas J.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Herrmann, Mark H.; Jones, Michael; Mckenney, John; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Stygar, William A.; Jennings, Christopher A.; Mcbride, Ryan; Lamppa, Derek C.; Martin, Matthew R.; Rovang, Dean C.; Sinars, Daniel; Slutz, Stephen A.; Cuneo, Michael E.

Abstract not provided.

Observations of Modified Three-Dimensional Instability Structure for Imploding z -Pinch Liners that are Premagnetized with an Axial Field

Physical Review Letters

Mcbride, Ryan; Gomez, Matthew R.; Hansen, Stephanie B.; Herrmann, Mark H.; Mckenney, John; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Stygar, William A.; Jennings, Christopher A.; Lamppa, Derek C.; Martin, Matthew R.; Rovang, Dean C.; Slutz, Stephen A.; Cuneo, Michael E.; Owen, Albert C.; Sinars, Daniel

Novel experimental data are reported that reveal helical instability formation on imploding z -pinch liners that are premagnetized with an axial field. Such instabilities differ dramatically from the mostly azimuthally symmetric instabilities that form on unmagnetized liners. The helical structure persists at nearly constant pitch as the liner implodes. This is surprising since, at the liner surface, the azimuthal drive field presumably dwarfs the axial field for all but the earliest stages of the experiment. These fundamentally 3D results provide a unique and challenging test for 3D-magnetohydrodynamics simulations.

More Details
Results 51–100 of 154
Results 51–100 of 154