Publications

Results 26–50 of 57

Search results

Jump to search filters

Integration of energy storage with diesel generation in remote communities

MRS Energy and Sustainability

Trevizan, Rodrigo D.; Headley, Alexander J.; Geer, Robert; Atcitty, Stanley A.; Gyuk, Imre

Highlights: Battery energy storage may improve energy efficiency and reliability of hybrid energy systems composed by diesel and solar photovoltaic power generators serving isolated communities.In projects aiming update of power plants serving electrically isolated communities with redundant diesel generation, battery energy storage can improve overall economic performance of power supply system by reducing fuel usage, decreasing capital costs by replacing redundant diesel generation units, and increasing generator system life by shortening yearly runtime.Fast-acting battery energy storage systems with grid-forming inverters might have potential for improving drastically the reliability indices of isolated communities currently supplied by diesel generation. Abstract: This paper will highlight unique challenges and opportunities with regard to energy storage utilization in remote, self-sustaining communities. The energy management of such areas has unique concerns. Diesel generation is often the go-to power source in these scenarios, but these systems are not devoid of issues. Without dedicated maintenance crews as in large, interconnected network areas, minor interruptions can be frequent and invasive not only for those who lose power, but also for those in the community that must then correct any faults. Although the immediate financial benefits are perhaps not readily apparent, energy storage could be used to address concerns related to reliability, automation, fuel supply concerns, generator degradation, solar utilization, and, yes, fuel costs to name a few. These ideas are shown through a case study of the Levelock Village of Alaska. Currently, the community is faced with high diesel prices and a difficult supply chain, which makes temporary loss of power very common and reductions in fuel consumption very impactful. This study will investigate the benefits that an energy storage system could bring to the overall system life, fuel costs, and reliability of the power supply. The variable efficiency of the generators, impact of startup/shutdown process, and low-load operation concerns are considered. The technological benefits of the combined system will be explored for various scenarios of future diesel prices and technology maintenance/replacement costs as well as for the avoidance of power interruptions that are so common in the community currently. Graphic abstract: [Figure not available: see fulltext.] Discussion: In several cases, energy storage can provide a means to promote energy equity by improving remote communities’ power supply reliability to levels closer to what the average urban consumer experiences at a reduced cost compared to transmission buildout. Furthermore, energy equity represents a hard-to-quantify benefit achieved by the integration of energy storage to isolated power systems of under-served communities, which suggests that the financial aspects of such projects should be questioned as the main performance criterion. To improve battery energy storage system valuation for diesel-based power systems, integration analysis must be holistic and go beyond fuel savings to capture every value stream possible.

More Details

Distribution System State Estimation Sensitivity to Errors in Phase Connections

Conference Record of the IEEE Photovoltaic Specialists Conference

Trevizan, Rodrigo D.; Reno, Matthew J.

High penetration of distributed energy resources presents challenges for monitoring and control of power distribution systems. Some of these problems might be solved through accurate monitoring of distribution systems, such as what can be achieved with distribution system state estimation (DSSE). With the recent large-scale deployment of advanced metering infrastructure associated with existing SCADA measurements, DSSE may become a reality in many utilities. In this paper, we present a sensitivity analysis of DSSE with respect to phase mislabeling of single-phase service transformers, another class of errors distribution system operators are faced with regularly. The results show DSSE is more robust to phase label errors than a power flow-based technique, which would allow distribution engineers to more accurately capture the impacts and benefits of distributed PV.

More Details

Convolutional Neural Network-based Inertia Estimation using Local Frequency Measurements

2020 52nd North American Power Symposium, NAPS 2020

Poudyal, Abodh; Fourney, Robert; Tonkoski, Reinaldo; Hansen, Timothy M.; Tamrakar, Ujjwol; Trevizan, Rodrigo D.

Increasing installation of renewable energy resources makes the power system inertia a time-varying quantity. Furthermore, converter-dominated grids have different dynamics compared to conventional grids and therefore estimates of the inertia constant using existing dynamic power system models are unsuitable. In this paper, a novel inertia estimation technique based on convolutional neural networks that use local frequency measurements is proposed. The model uses a non-intrusive excitation signal to perturb the system and measure frequency using a phase-locked loop. The estimated inertia constants, within 10% of actual values, have an accuracy of 97.35% and root mean square error of 0.2309. Furthermore, the model evaluated on unknown frequency measurements during the testing phase estimated the inertia constant with a root mean square error of 0.1763. The proposed model-free approach can estimate the inertia constant with just local frequency measurements and can be applied over traditional inertia estimation methods that do not incorporate the dynamic impact of renewable energy sources.

More Details

Topology Identification of Power Distribution Systems Using Time Series of Voltage Measurements

2021 IEEE Power and Energy Conference at Illinois, PECI 2021

Francis, Cody; Trevizan, Rodrigo D.; Reno, Matthew J.; Rao, Vittal

Topology identification in transmission systems has historically been accomplished using SCADA measurements. In distribution systems, however, SCADA measurements are insufficient to determine system topology. An accurate system topology is essential for distribution system monitoring and operation. Recently there has been a proliferation of Advanced Metering Infrastructure (AMI) by the electrical utilities, which improved the visibility into distribution systems. These measurements offer a unique capability for Distribution System Topology Identification (DSTI). A novel approach to DSTI is presented in this paper which utilizes the voltage magnitudes collected by distribution grid sensors to facilitate identification of the topology of the distribution network in real-time using Linear Discriminant Analysis (LDA) and Regularized Diagonal Quadratic Discriminant Analysis (RDQDA). The results show that this method can leverage noisy voltage magnitude readings from load buses to accurately identify distribution system reconfiguration between radial topologies during operation under changing loads.

More Details

Review of Dynamic and Transient Modeling of Power Electronic Converters for Converter Dominated Power Systems

IEEE Access

Shah, Chinmay; Campo-Ossa, Daniel D.; Patarroyo-Montenegro, Juan F.; Guruwacharya, Nischal; Bhujel, Niranjan; Trevizan, Rodrigo D.; Andrade, Fabio; Shirazi, Mariko; Tonkoski, Reinaldo; Wies, Richard; Hansen, Timothy M.; Cicilio, Phylicia

In response to national and international carbon reduction goals, renewable energy resources like photovoltaics (PV) and wind, and energy storage technologies like fuel-cells are being extensively integrated in electric grids. All these energy resources require power electronic converters (PECs) to interconnect to the electric grid. These PECs have different response characteristics to dynamic stability issues compared to conventional synchronous generators. As a result, the demand for validated models to study and control these stability issues of PECs has increased drastically. This paper provides a review of the existing PEC model types and their applicable uses. The paper provides a description of the suitable model types based on the relevant dynamic stability issues. Challenges and benefits of using the appropriate PEC model type for studying each type of stability issue are also presented.

More Details

Ensemble Learning, Prediction and Li-Ion Cell Charging Cycle Divergence

IEEE Open Access Journal of Power and Energy

Obert, James O.; Torres-Castro, Loraine T.; Trevizan, Rodrigo D.; Preger, Yuliya P.

In recent years, the pervasive use of lithium ion (Li-ion) batteries in applications such as cell phones, laptop computers, electric vehicles, and grid energy storage systems has prompted the development of specialized battery management systems (BMS). The primary goal of a BMS is to maintain a reliable and safe battery power source while maximizing the calendar life and performance of the cells. To maintain safe operation, a BMS should be programmed to minimize degradation and prevent damage to a Li-ion cell, which can lead to thermal runaway. Cell damage can occur over time if a BMS is not properly configured to avoid overcharging and discharging. To prevent cell damage, efficient and accurate cell charging cycle characteristics algorithms must be employed. In this paper, computationally efficient and accurate ensemble learning algorithms capable of detecting Li-ion cell charging irregularities are described. Additionally, it is shown using machine and deep learning that it is possible to accurately and efficiently detect when a cell has experienced thermal and electrical stress due to cell overcharging by measuring charging cycle divergence.

More Details

Data-Driven Incident Detection in Power Distribution Systems

IEEE Power and Energy Society General Meeting

Aguiar, Nayara; Trevizan, Rodrigo D.; Gupta, Vijay; Chalamala, Babu C.; Byrne, Raymond H.

In a power distribution network with energy storage systems (ESS) and advanced controls, traditional monitoring and protection schemes are not well suited for detecting anomalies such as malfunction of controllable devices. In this work, we propose a data-driven technique for the detection of incidents relevant to the operation of ESS in distribution grids. This approach leverages the causal relationship observed among sensor data streams, and does not require prior knowledge of the system model or parameters. Our methodology includes a data augmentation step which allows for the detection of incidents even when sensing is scarce. The effectiveness of our technique is illustrated through case studies which consider active power dispatch and reactive power control of ESS.

More Details

Topology Identification with Smart Meter Data Using Security Aware Machine Learning

2021 North American Power Symposium, NAPS 2021

Francis, Cody; Rao, Vittal S.; Trevizan, Rodrigo D.

Distribution system topology identification has historically been accomplished by unencrypting the information that is received from the smart meters and then running a topology identification algorithm. Unencrypted smart meter data introduces privacy and security issues for utility companies and their customers. This paper introduces security aware machine learning algorithms to alleviate the privacy and security issues raised with un-encrypted smart meter data. The security aware machine learning algorithms use the information received from the Advanced Metering Infrastructure (AMI) and identifies the distribution systems topology without unencrypting the AMI data by using fully homomorphic NTRU and CKKS encryption. The encrypted smart meter data is then used by Linear Discriminant Analysis, Convolution Neural Network, and Support Vector Machine algorithms to predict the distribution systems real time topology. This method can leverage noisy voltage magnitude readings from smart meters to accurately identify distribution system reconfiguration between radial topologies during operation under changing loads.

More Details

Detecting False Data Injection Attacks to Battery State Estimation Using Cumulative Sum Algorithm

2021 North American Power Symposium, NAPS 2021

Obrien, Victoria; Trevizan, Rodrigo D.; Rao, Vittal S.

Estimated parameters in Battery Energy Storage Systems (BESSs) may be vulnerable to cyber-attacks such as False Data Injection Attacks (FDIAs). FDIAs, which typically evade bad data detectors, could damage or degrade Battery Energy Storage Systems (BESSs). This paper will investigate methods to detect small magnitude FDIA using battery equivalent circuit models, an Extended Kalman Filter (EKF), and a Cumulative Sum (CUSUM) algorithm. A priori error residual data estimated by the EKF was used in the CUSUM algorithm to find the lowest detectable FDIA for this battery equivalent model. The algorithm described in this paper was able to detect attacks as low as 1 mV, with no false positives. The CUSUM algorithm was compared to a chi-squared based FDIA detector. In this study the CUSUM was found to detect attacks of smaller magnitudes than the conventional chi-squared detector.

More Details
Results 26–50 of 57
Results 26–50 of 57