Publications

Results 26–50 of 64

Search results

Jump to search filters

Efficient DER Voltage Control Using Ensemble Deep Reinforcement Learning

Proceedings - 2022 5th International Conference on Artificial Intelligence for Industries, AI4I 2022

Obert, James O.; Trevizan, Rodrigo D.; Chavez, Adrian R.

To meet the challenges oflow-carbon power generation, distributed energy resources (DERs) such as solar and wind power generators are now widely integrated into the power grid. Because of the autonomous nature of DERs, ensuring properly regulated output voltages of the individual sources to the grid distribution system poses a technical challenge to grid operators. Stochastic, model-free voltage regulations methods such as deep reinforcement learning (DRL) have proven effective in the regulation of DER output voltages; however, deriving an optimal voltage control policy using DRL over a large state space has a large computational time complexity. In this paper we illustrate a computationally efficient method for deriving an optimal voltage control policy using a parallelized DRL ensemble. Additionally, we illustrate the resiliency of the control ensemble when random noise is introduced by a cyber adversary.

More Details

Detection of False Data Injection Attacks in Power System State Estimation Using Sensor Encoding

2022 IEEE Kansas Power and Energy Conference, KPEC 2022

Trevizan, Rodrigo D.; Reno, Matthew J.

In this paper, we present a sensor encoding technique for the detection of stealthy false data injection attacks in static power system state estimation. This method implements low-cost verification of the integrity of measurement data, allowing for the detection of stealthy additive attack vectors. It is considered that these attacks are crafted by malicious actors with knowledge of the system models and capable of tampering with any number of measurements. The solution involves encoding all vulnerable measurements. The effectiveness of the method was demonstrated through a simulation where a stealthy attack on an encoded measurement vector generates large residuals that trigger a chi-squared anomaly detector (e.g. χ2). Following a defense in-depth approach, this method could be used with other security features such as communications encryption to provide an additional line of defense against cyberattacks.

More Details

Cyberphysical Security of Grid Battery Energy Storage Systems

IEEE Access

Trevizan, Rodrigo D.; Obert, James O.; De Angelis, Valerio; Nguyen, Tu A.; Rao, Vittal S.; Chalamala, Babu C.

This paper presents a literature review on current practices and trends on cyberphysical security of grid-connected battery energy storage systems (BESSs). Energy storage is critical to the operation of Smart Grids powered by intermittent renewable energy resources. To achieve this goal, utility-scale and consumer-scale BESS will have to be fully integrated into power systems operations, providing ancillary services and performing functions to improve grid reliability, balance power and demand, among others. This vision of the future power grid will only become a reality if BESS are able to operate in a coordinated way with other grid entities, thus requiring significant communication capabilities. The pervasive networking infrastructure necessary to fully leverage the potential of storage increases the attack surface for cyberthreats, and the unique characteristics of battery systems pose challenges for cyberphysical security. This paper discusses a number of such threats, their associated attack vectors, detection methods, protective measures, research gaps in the literature and future research trends.

More Details

IMoFi - Intelligent Model Fidelity: Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration (Final Report)

Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany D.; Lave, Matt; Azzolini, Joseph A.; Yusuf, Jubair; Jones, Christian B.; Furlani Bastos, Alvaro; Chalamala, Rohit; Korkali, Mert; Sun, Chih-Che; Donadee, Jonathan; Stewart, Emma M.; Donde, Vaibhav; Peppanen, Jouni; Hernandez, Miguel; Deboever, Jeremiah; Rocha, Celso; Rylander, Matthew; Siratarnsophon, Piyapath; Grijalva, Santiago; Talkington, Samuel; Gomez-Peces, Cristian; Mason, Karl; Vejdan, Sadegh; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya; Divan, Deepak; Li, Feng; Therrien, Francis; Jacques, Patrick; Rao, Vittal; Francis, Cody; Zaragoza, Nicholas; Nordy, David; Glass, Jim

This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO) to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.

More Details

Integration of energy storage with diesel generation in remote communities

MRS Energy and Sustainability

Trevizan, Rodrigo D.; Headley, Alexander J.; Geer, Robert; Atcitty, Stanley; Gyuk, Imre

Highlights: Battery energy storage may improve energy efficiency and reliability of hybrid energy systems composed by diesel and solar photovoltaic power generators serving isolated communities.In projects aiming update of power plants serving electrically isolated communities with redundant diesel generation, battery energy storage can improve overall economic performance of power supply system by reducing fuel usage, decreasing capital costs by replacing redundant diesel generation units, and increasing generator system life by shortening yearly runtime.Fast-acting battery energy storage systems with grid-forming inverters might have potential for improving drastically the reliability indices of isolated communities currently supplied by diesel generation. Abstract: This paper will highlight unique challenges and opportunities with regard to energy storage utilization in remote, self-sustaining communities. The energy management of such areas has unique concerns. Diesel generation is often the go-to power source in these scenarios, but these systems are not devoid of issues. Without dedicated maintenance crews as in large, interconnected network areas, minor interruptions can be frequent and invasive not only for those who lose power, but also for those in the community that must then correct any faults. Although the immediate financial benefits are perhaps not readily apparent, energy storage could be used to address concerns related to reliability, automation, fuel supply concerns, generator degradation, solar utilization, and, yes, fuel costs to name a few. These ideas are shown through a case study of the Levelock Village of Alaska. Currently, the community is faced with high diesel prices and a difficult supply chain, which makes temporary loss of power very common and reductions in fuel consumption very impactful. This study will investigate the benefits that an energy storage system could bring to the overall system life, fuel costs, and reliability of the power supply. The variable efficiency of the generators, impact of startup/shutdown process, and low-load operation concerns are considered. The technological benefits of the combined system will be explored for various scenarios of future diesel prices and technology maintenance/replacement costs as well as for the avoidance of power interruptions that are so common in the community currently. Graphic abstract: [Figure not available: see fulltext.] Discussion: In several cases, energy storage can provide a means to promote energy equity by improving remote communities’ power supply reliability to levels closer to what the average urban consumer experiences at a reduced cost compared to transmission buildout. Furthermore, energy equity represents a hard-to-quantify benefit achieved by the integration of energy storage to isolated power systems of under-served communities, which suggests that the financial aspects of such projects should be questioned as the main performance criterion. To improve battery energy storage system valuation for diesel-based power systems, integration analysis must be holistic and go beyond fuel savings to capture every value stream possible.

More Details

Distribution System State Estimation Sensitivity to Errors in Phase Connections

Conference Record of the IEEE Photovoltaic Specialists Conference

Trevizan, Rodrigo D.; Reno, Matthew J.

High penetration of distributed energy resources presents challenges for monitoring and control of power distribution systems. Some of these problems might be solved through accurate monitoring of distribution systems, such as what can be achieved with distribution system state estimation (DSSE). With the recent large-scale deployment of advanced metering infrastructure associated with existing SCADA measurements, DSSE may become a reality in many utilities. In this paper, we present a sensitivity analysis of DSSE with respect to phase mislabeling of single-phase service transformers, another class of errors distribution system operators are faced with regularly. The results show DSSE is more robust to phase label errors than a power flow-based technique, which would allow distribution engineers to more accurately capture the impacts and benefits of distributed PV.

More Details

Convolutional Neural Network-based Inertia Estimation using Local Frequency Measurements

2020 52nd North American Power Symposium, NAPS 2020

Poudyal, Abodh; Fourney, Robert; Tonkoski, Reinaldo; Hansen, Timothy M.; Tamrakar, Ujjwol; Trevizan, Rodrigo D.

Increasing installation of renewable energy resources makes the power system inertia a time-varying quantity. Furthermore, converter-dominated grids have different dynamics compared to conventional grids and therefore estimates of the inertia constant using existing dynamic power system models are unsuitable. In this paper, a novel inertia estimation technique based on convolutional neural networks that use local frequency measurements is proposed. The model uses a non-intrusive excitation signal to perturb the system and measure frequency using a phase-locked loop. The estimated inertia constants, within 10% of actual values, have an accuracy of 97.35% and root mean square error of 0.2309. Furthermore, the model evaluated on unknown frequency measurements during the testing phase estimated the inertia constant with a root mean square error of 0.1763. The proposed model-free approach can estimate the inertia constant with just local frequency measurements and can be applied over traditional inertia estimation methods that do not incorporate the dynamic impact of renewable energy sources.

More Details

Topology Identification of Power Distribution Systems Using Time Series of Voltage Measurements

2021 IEEE Power and Energy Conference at Illinois, PECI 2021

Francis, Cody; Trevizan, Rodrigo D.; Reno, Matthew J.; Rao, Vittal

Topology identification in transmission systems has historically been accomplished using SCADA measurements. In distribution systems, however, SCADA measurements are insufficient to determine system topology. An accurate system topology is essential for distribution system monitoring and operation. Recently there has been a proliferation of Advanced Metering Infrastructure (AMI) by the electrical utilities, which improved the visibility into distribution systems. These measurements offer a unique capability for Distribution System Topology Identification (DSTI). A novel approach to DSTI is presented in this paper which utilizes the voltage magnitudes collected by distribution grid sensors to facilitate identification of the topology of the distribution network in real-time using Linear Discriminant Analysis (LDA) and Regularized Diagonal Quadratic Discriminant Analysis (RDQDA). The results show that this method can leverage noisy voltage magnitude readings from load buses to accurately identify distribution system reconfiguration between radial topologies during operation under changing loads.

More Details

Ensemble Learning, Prediction and Li-Ion Cell Charging Cycle Divergence

IEEE Open Access Journal of Power and Energy

Obert, James O.; Torres-Castro, Loraine; Trevizan, Rodrigo D.; Preger, Yuliya

In recent years, the pervasive use of lithium ion (Li-ion) batteries in applications such as cell phones, laptop computers, electric vehicles, and grid energy storage systems has prompted the development of specialized battery management systems (BMS). The primary goal of a BMS is to maintain a reliable and safe battery power source while maximizing the calendar life and performance of the cells. To maintain safe operation, a BMS should be programmed to minimize degradation and prevent damage to a Li-ion cell, which can lead to thermal runaway. Cell damage can occur over time if a BMS is not properly configured to avoid overcharging and discharging. To prevent cell damage, efficient and accurate cell charging cycle characteristics algorithms must be employed. In this paper, computationally efficient and accurate ensemble learning algorithms capable of detecting Li-ion cell charging irregularities are described. Additionally, it is shown using machine and deep learning that it is possible to accurately and efficiently detect when a cell has experienced thermal and electrical stress due to cell overcharging by measuring charging cycle divergence.

More Details
Results 26–50 of 64
Results 26–50 of 64