Publications

8 Results

Search results

Jump to search filters

Convolutional Neural Network-based Inertia Estimation using Local Frequency Measurements

2020 52nd North American Power Symposium, NAPS 2020

Poudyal, Abodh; Fourney, Robert; Tonkoski, Reinaldo; Hansen, Timothy M.; Tamrakar, Ujjwol; Trevizan, Rodrigo D.

Increasing installation of renewable energy resources makes the power system inertia a time-varying quantity. Furthermore, converter-dominated grids have different dynamics compared to conventional grids and therefore estimates of the inertia constant using existing dynamic power system models are unsuitable. In this paper, a novel inertia estimation technique based on convolutional neural networks that use local frequency measurements is proposed. The model uses a non-intrusive excitation signal to perturb the system and measure frequency using a phase-locked loop. The estimated inertia constants, within 10% of actual values, have an accuracy of 97.35% and root mean square error of 0.2309. Furthermore, the model evaluated on unknown frequency measurements during the testing phase estimated the inertia constant with a root mean square error of 0.1763. The proposed model-free approach can estimate the inertia constant with just local frequency measurements and can be applied over traditional inertia estimation methods that do not incorporate the dynamic impact of renewable energy sources.

More Details

Review of Dynamic and Transient Modeling of Power Electronic Converters for Converter Dominated Power Systems

IEEE Access

Shah, Chinmay; Campo-Ossa, Daniel D.; Patarroyo-Montenegro, Juan F.; Guruwacharya, Nischal; Bhujel, Niranjan; Trevizan, Rodrigo D.; Andrade, Fabio; Shirazi, Mariko; Tonkoski, Reinaldo; Wies, Richard; Hansen, Timothy M.; Cicilio, Phylicia

In response to national and international carbon reduction goals, renewable energy resources like photovoltaics (PV) and wind, and energy storage technologies like fuel-cells are being extensively integrated in electric grids. All these energy resources require power electronic converters (PECs) to interconnect to the electric grid. These PECs have different response characteristics to dynamic stability issues compared to conventional synchronous generators. As a result, the demand for validated models to study and control these stability issues of PECs has increased drastically. This paper provides a review of the existing PEC model types and their applicable uses. The paper provides a description of the suitable model types based on the relevant dynamic stability issues. Challenges and benefits of using the appropriate PEC model type for studying each type of stability issue are also presented.

More Details

Optimization-Based Fast-Frequency Estimation and Control of Low-Inertia Microgrids

IEEE Transactions on Energy Conversion

Tamrakar, Ujjwol; Copp, David; Nguyen, Tu A.; Hansen, Timothy M.; Tonkoski, Reinaldo

The lack of inertial response from non-synchronous, inverter-based generation in microgrids makes the power system vulnerable to a large rate of change of frequency (ROCOF) and frequency excursions. Energy storage systems (ESSs) can be utilized to provide fast-frequency support to prevent such large excursions in the system. However, fast-frequency support is a power-intensive application that has a significant impact on the ESS lifetime. In this paper, a framework that allows the ESS operator to provide fast-frequency support as a service is proposed. The framework maintains the desired quality-of-service (limiting the ROCOF and frequency) while taking into account the ESS lifetime and physical limits. The framework utilizes moving horizon estimation (MHE) to estimate the frequency deviation and ROCOF from noisy phase-locked loop (PLL) measurements. These estimates are employed by a model predictive control (MPC) algorithm that computes control actions by solving a finite-horizon, online optimization problem. Additionally, this approach avoids oscillatory behavior induced by delays that are common when using low-pass filters as with traditional derivative-based (virtual inertia) controllers. MATLAB/Simulink simulations on a test system from Cordova, Alaska, show the effectiveness of the MHE-MPC approach to reduce frequency deviations and ROCOF of a low-inertia microgrid.

More Details

Inertia estimation in power systems using energy storage and system identification techniques

2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020

Tamrakar, Ujjwol; Guruwacharya, Nischal; Bhujel, Niranjan; Wilches-Bernal, Felipe; Hansen, Timothy M.; Tonkoski, Reinaldo

Fast-frequency control strategies have been proposed in the literature to maintain inertial response of electric generation and help with the frequency regulation of the system. However, it is challenging to deploy such strategies when the inertia constant of the system is unknown and time-varying. In this paper, we present a data-driven system identification approach for an energy storage system (ESS) operator to identify the inertial response of the system (and consequently the inertia constant). The method is first tested and validated with a simulated genset model using small changes in the system load as the excitation signal and measuring the corresponding change in frequency. The validated method is then used to experimentally identify the inertia constant of a genset. The inertia constant of the simulated genset model was estimated with an error of less than 5% which provides a reasonable estimate for the ESS operator to properly tune the parameters of a fast-frequency controller.

More Details
8 Results
8 Results