Distribution system topology identification has historically been accomplished by unencrypting the information that is received from the smart meters and then running a topology identification algorithm. Unencrypted smart meter data introduces privacy and security issues for utility companies and their customers. This paper introduces security aware machine learning algorithms to alleviate the privacy and security issues raised with un-encrypted smart meter data. The security aware machine learning algorithms use the information received from the Advanced Metering Infrastructure (AMI) and identifies the distribution systems topology without unencrypting the AMI data by using fully homomorphic NTRU and CKKS encryption. The encrypted smart meter data is then used by Linear Discriminant Analysis, Convolution Neural Network, and Support Vector Machine algorithms to predict the distribution systems real time topology. This method can leverage noisy voltage magnitude readings from smart meters to accurately identify distribution system reconfiguration between radial topologies during operation under changing loads.
Estimated parameters in Battery Energy Storage Systems (BESSs) may be vulnerable to cyber-attacks such as False Data Injection Attacks (FDIAs). FDIAs, which typically evade bad data detectors, could damage or degrade Battery Energy Storage Systems (BESSs). This paper will investigate methods to detect small magnitude FDIA using battery equivalent circuit models, an Extended Kalman Filter (EKF), and a Cumulative Sum (CUSUM) algorithm. A priori error residual data estimated by the EKF was used in the CUSUM algorithm to find the lowest detectable FDIA for this battery equivalent model. The algorithm described in this paper was able to detect attacks as low as 1 mV, with no false positives. The CUSUM algorithm was compared to a chi-squared based FDIA detector. In this study the CUSUM was found to detect attacks of smaller magnitudes than the conventional chi-squared detector.
Shah, Chinmay; Campo-Ossa, Daniel D.; Patarroyo-Montenegro, Juan F.; Guruwacharya, Nischal; Bhujel, Niranjan; Trevizan, Rodrigo D.; Andrade, Fabio; Shirazi, Mariko; Tonkoski, Reinaldo; Wies, Richard; Hansen, Timothy M.; Cicilio, Phylicia
In response to national and international carbon reduction goals, renewable energy resources like photovoltaics (PV) and wind, and energy storage technologies like fuel-cells are being extensively integrated in electric grids. All these energy resources require power electronic converters (PECs) to interconnect to the electric grid. These PECs have different response characteristics to dynamic stability issues compared to conventional synchronous generators. As a result, the demand for validated models to study and control these stability issues of PECs has increased drastically. This paper provides a review of the existing PEC model types and their applicable uses. The paper provides a description of the suitable model types based on the relevant dynamic stability issues. Challenges and benefits of using the appropriate PEC model type for studying each type of stability issue are also presented.
The state of California is leading the nation with respect to solar energy and storage. The California Energy Commission has mandated that starting in 2020 all new homes must be solar powered. In 2010 the California state legislature adopted an energy storage mandate AB 2514. This required California's three largest utilities to contract for an additiona11.3 GW of energy storage by 2020, coming online by 2024. Therefore, there is keen interest in the potential advantages of deploying solar combined with energy storage. This paper formulates the optimization problem to identify the maximum potential revenue from pairing storage with solar and participating in the California Independent System Operator (CAISO) day ahead market for energy. Using the optimization formulation, five years of historical market data (2014-2018) for 2, 172 price nodes were analyzed to identify trends and opportunities for the deployment of solar plus storage.
This paper presents a techno-economic analysis of behind-the-meter (BTM) solar photovoltaic (PV) and battery energy storage systems (BESS) applied to an Electric Vehicle (EV) fast-charging station. The goal is to estimate the maximum return on investment (ROI) that can be obtained for optimum BESS and PV size and their operation. Fast charging is a technology that will speed up mass adoption of EVs, which currently requires several hours to achieve full recharge in level 1 or 2 chargers. Fast chargers demand from tens to hundreds of kilowatts from the distribution grid, potentially leading to system congestion and overload. The problem is formulated as a linear program that obtains the size of PV, power and energy ratings of BESS as well as charging and discharging scheduling of the storage system to maximize ROI under operational constraints of BESS and PV. The revenue are cost-savings of demand and time-of-use charges, with a penalty for BESS degradation. We have considered Los Angeles Department of Water and Power tariff A-2 and fast charger data derived from the EV Project. The results show that a 46.5 kW/28.3 kWh BESS can obtain a ROI of about $22.4k over 10 years for a small 4-port fast-charging station.
Increased deployment of rooftop solar in California has resulted in the "duck curve", where there is a decrease in the midday net load followed by a very fast increase in late afternoon caused by declining solar output and a simultaneous increase in load. The large observed and even larger predicted ramp rates present a reliability concern. Therefore, there is keen interest in the potential advantages of deploying solar combined with energy storage. This paper formulates the optimization problem to identify the maximum potential revenue from pairing storage with solar and participating in the California Independent System Operator (CAISO) hour-ahead scheduling process (HASP) real-time market for energy. Using the optimization formulation, five years of historical market data (2014-2018) for 2, 172 price nodes was analyzed to identify trends and opportunities for the deployment of solar plus storage. In addition, a comparison of the opportunities in the day ahead and HASP real-time energy markets is presented.
This paper presents a techno-economic analysis of behind-the-meter (BTM) solar photovoltaic (PV) and battery energy storage systems (BESS) applied to an Electric Vehicle (EV) fast-charging station. The goal is to estimate the maximum return on investment (ROI) that can be obtained for optimum BESS and PV size and their operation. Fast charging is a technology that will speed up mass adoption of EVs, which currently requires several hours to achieve full recharge in level 1 or 2 chargers. Fast chargers demand from tens to hundreds of kilowatts from the distribution grid, potentially leading to system congestion and overload. The problem is formulated as a linear program that obtains the size of PV, power and energy ratings of BESS as well as charging and discharging scheduling of the storage system to maximize ROI under operational constraints of BESS and PV. The revenue are cost-savings of demand and time-of-use charges, with a penalty for BESS degradation. We have considered Los Angeles Department of Water and Power tariff A-2 and fast charger data derived from the EV Project. The results show that a 46.5 kW/28.3 kWh BESS can obtain a ROI of about $22.4k over 10 years for a small 4-port fast-charging station.