Publications

Results 51–64 of 64

Search results

Jump to search filters

Topology Identification with Smart Meter Data Using Security Aware Machine Learning

2021 North American Power Symposium, NAPS 2021

Francis, Cody; Rao, Vittal S.; Trevizan, Rodrigo D.

Distribution system topology identification has historically been accomplished by unencrypting the information that is received from the smart meters and then running a topology identification algorithm. Unencrypted smart meter data introduces privacy and security issues for utility companies and their customers. This paper introduces security aware machine learning algorithms to alleviate the privacy and security issues raised with un-encrypted smart meter data. The security aware machine learning algorithms use the information received from the Advanced Metering Infrastructure (AMI) and identifies the distribution systems topology without unencrypting the AMI data by using fully homomorphic NTRU and CKKS encryption. The encrypted smart meter data is then used by Linear Discriminant Analysis, Convolution Neural Network, and Support Vector Machine algorithms to predict the distribution systems real time topology. This method can leverage noisy voltage magnitude readings from smart meters to accurately identify distribution system reconfiguration between radial topologies during operation under changing loads.

More Details

Detecting False Data Injection Attacks to Battery State Estimation Using Cumulative Sum Algorithm

2021 North American Power Symposium, NAPS 2021

Obrien, Victoria; Trevizan, Rodrigo D.; Rao, Vittal S.

Estimated parameters in Battery Energy Storage Systems (BESSs) may be vulnerable to cyber-attacks such as False Data Injection Attacks (FDIAs). FDIAs, which typically evade bad data detectors, could damage or degrade Battery Energy Storage Systems (BESSs). This paper will investigate methods to detect small magnitude FDIA using battery equivalent circuit models, an Extended Kalman Filter (EKF), and a Cumulative Sum (CUSUM) algorithm. A priori error residual data estimated by the EKF was used in the CUSUM algorithm to find the lowest detectable FDIA for this battery equivalent model. The algorithm described in this paper was able to detect attacks as low as 1 mV, with no false positives. The CUSUM algorithm was compared to a chi-squared based FDIA detector. In this study the CUSUM was found to detect attacks of smaller magnitudes than the conventional chi-squared detector.

More Details

Review of Dynamic and Transient Modeling of Power Electronic Converters for Converter Dominated Power Systems

IEEE Access

Shah, Chinmay; Campo-Ossa, Daniel D.; Patarroyo-Montenegro, Juan F.; Guruwacharya, Nischal; Bhujel, Niranjan; Trevizan, Rodrigo D.; Andrade, Fabio; Shirazi, Mariko; Tonkoski, Reinaldo; Wies, Richard; Hansen, Timothy M.; Cicilio, Phylicia

In response to national and international carbon reduction goals, renewable energy resources like photovoltaics (PV) and wind, and energy storage technologies like fuel-cells are being extensively integrated in electric grids. All these energy resources require power electronic converters (PECs) to interconnect to the electric grid. These PECs have different response characteristics to dynamic stability issues compared to conventional synchronous generators. As a result, the demand for validated models to study and control these stability issues of PECs has increased drastically. This paper provides a review of the existing PEC model types and their applicable uses. The paper provides a description of the suitable model types based on the relevant dynamic stability issues. Challenges and benefits of using the appropriate PEC model type for studying each type of stability issue are also presented.

More Details

Opportunities and Trends for Energy Storage plus Solar in CAISO: 2014-2018

IEEE Power and Energy Society General Meeting

Byrne, Raymond H.; Nguyen, Tu A.; Headley, Alexander; Wilches-Bernal, Felipe; Concepcion, Ricky; Trevizan, Rodrigo D.

More Details

Sizing behind-the-meter energy storage and solar for electric vehicle fast-charging stations

2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020

Trevizan, Rodrigo D.; Nguyen, Tu A.; Byrne, Raymond H.

This paper presents a techno-economic analysis of behind-the-meter (BTM) solar photovoltaic (PV) and battery energy storage systems (BESS) applied to an Electric Vehicle (EV) fast-charging station. The goal is to estimate the maximum return on investment (ROI) that can be obtained for optimum BESS and PV size and their operation. Fast charging is a technology that will speed up mass adoption of EVs, which currently requires several hours to achieve full recharge in level 1 or 2 chargers. Fast chargers demand from tens to hundreds of kilowatts from the distribution grid, potentially leading to system congestion and overload. The problem is formulated as a linear program that obtains the size of PV, power and energy ratings of BESS as well as charging and discharging scheduling of the storage system to maximize ROI under operational constraints of BESS and PV. The revenue are cost-savings of demand and time-of-use charges, with a penalty for BESS degradation. We have considered Los Angeles Department of Water and Power tariff A-2 and fast charger data derived from the EV Project. The results show that a 46.5 kW/28.3 kWh BESS can obtain a ROI of about $22.4k over 10 years for a small 4-port fast-charging station.

More Details

Opportunities and trends for energy storage plus solar in the CAISO real-time market: 2014-2018

2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020

Byrne, Raymond H.; Nguyen, Tu A.; Headley, Alexander; Trevizan, Rodrigo D.

More Details

Sizing behind-the-meter energy storage and solar for electric vehicle fast-charging stations

2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020

Trevizan, Rodrigo D.; Nguyen, Tu A.; Byrne, Raymond H.

This paper presents a techno-economic analysis of behind-the-meter (BTM) solar photovoltaic (PV) and battery energy storage systems (BESS) applied to an Electric Vehicle (EV) fast-charging station. The goal is to estimate the maximum return on investment (ROI) that can be obtained for optimum BESS and PV size and their operation. Fast charging is a technology that will speed up mass adoption of EVs, which currently requires several hours to achieve full recharge in level 1 or 2 chargers. Fast chargers demand from tens to hundreds of kilowatts from the distribution grid, potentially leading to system congestion and overload. The problem is formulated as a linear program that obtains the size of PV, power and energy ratings of BESS as well as charging and discharging scheduling of the storage system to maximize ROI under operational constraints of BESS and PV. The revenue are cost-savings of demand and time-of-use charges, with a penalty for BESS degradation. We have considered Los Angeles Department of Water and Power tariff A-2 and fast charger data derived from the EV Project. The results show that a 46.5 kW/28.3 kWh BESS can obtain a ROI of about $22.4k over 10 years for a small 4-port fast-charging station.

More Details
Results 51–64 of 64
Results 51–64 of 64