Molecular Dynamics Analysis of Thermodynamic and Kinetic Properties of Surfaces and Interfaces of PdHx
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Current methods of detecting material aging rely heavily on accelerated aging studies expensive, bulky, and resource-hungry diagnostics. We are developing compact gas analysis methods based on sensor platforms such as quartz crystal microbalances (QCM), using nanoporous metals and Metal-Organic Frameworks (MOFs), which enhance sensitivity and impart selectivity to analytes. Targeted analytes are O2 and other volatile analytes. In FY16 we installed and tested a new QCM system coupled to a commercial gas mixing system. This instrumentation provides a new multi-use capability that: 1) allows evaluation of detection of novel materials to enable selective detection of volatile species relevant to Enhanced Surveillance; 2) accelerates development of new thin film deposition methods for depositing these materials on sensing devices; and 3) enables in-situ monitoring, with sub-monolayer sensitivity, of the interaction of volatile species with material surfaces subject to aging or corrosion.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Inorganic Chemistry
As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.
Abstract not provided.
Journal of Applied Physics
This paper uses molecular dynamics simulations to study surface and interface properties of PdHx that are relevant to hydrogen storage applications. In particular, surface energies, interfacial energies, surface diffusivities, and surface segregations are all determined as a function of temperature and composition. During the course of the calculations, we demonstrated robust molecular dynamics methods that can result in highly converged finite temperature properties. Challenging examples include accurate calculations of hydrogen surface diffusivities that account for all possible atomic jump mechanisms, and constructions of surface segregation composition profiles that have negligible statistical errors. Our robust calculations reveal that the Arrhenius plots of hydrogen surface diffusion is ideally linear at low compositions, and becomes nonlinear at high compositions. The fundamental cause for this behavior has been identified. This nonlinear surface diffusion behavioe is also in good agreement with available experimental data for bulk diffusion. The implication of our calculated properties on hydrogen storage application discussed.
Abstract not provided.
Journal of Physical Chemistry. C
The metal organic framework material Ni3(2,3,6,7,10,11 - hexaiminotriphenylene)2, (Ni3(HITP)2) is composed of layers of extended conjugated planes analogous to graphene. We carried out Density functional theory (DFT) calculations to model the electronic structure of bulk and monolayer Ni3(HITP)2. The layered 3D material is metallic, similar to graphene. Our calculations predict that there is appreciable band dispersion not only in-plane, but perpendicular to the stacking planes as well, suggesting that, unlike graphene, the conductivity may be nearly isotropic. In contrast, a 2D monolayer of the material exhibits a band gap, consistent with previously published results. Insight obtained from studies of the evolution of the material from semiconducting to metallic as the material is transitioned from 2D to 3D suggests the possibility of modifying the material to render it semiconducting by changing the metal center and inserting spacer moieties between the layers. Furthermore, the DFT calculations predict that the modified material will be structurally stable and exhibit a band gap.
Journal of Physical Chemistry C
Hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the "end points". For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear how they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.
Nature Energy
Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.
ACS Catalysis
We demonstrate that metal-organic frameworks (MOFs) can catalyze hydrogenolysis of aryl ether bonds under mild conditions. Mg-IRMOF-74(I) and Mg-IRMOF-74(II) are stable under reducing conditions and can cleave phenyl ethers containing β-O-4, α-O-4, and 4-O-5 linkages to the corresponding hydrocarbons and phenols. Reaction occurs at 10 bar H2 and 120 °C without added base. DFT-optimized structures and charge transfer analysis suggest that the MOF orients the substrate near Mg2+ ions on the pore walls. Ti and Ni doping further increase conversions to as high as 82% with 96% selectivity for hydrogenolysis versus ring hydrogenation. Repeated cycling induces no loss of activity, making this a promising route for mild aryl-ether bond scission.
Nature Materials
Here, thin and continuous films of porous metal-organic frameworks can now be conformally deposited on various substrates using a vapor-phase synthesis approach that departs from conventional solution-based routes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry Letters
Metal-organic frameworks (MOFs) are crystalline nanoporous materials comprised of organic electron donors linked to metal ions by strong coordination bonds. Applications such as gas storage and separations are currently receiving considerable attention, but if the unique properties of MOFs could be extended to electronics, magnetics, and photonics, the impact on material science would greatly increase. Recently, we obtained "emergent properties," such as electronic conductivity and energy transfer, by infiltrating MOF pores with "guest" molecules that interact with the framework electronic structure. In this Perspective, we define a path to emergent properties based on the Guest@MOF concept, using zinc-carboxylate and copper-paddlewheel MOFs for illustration. Energy transfer and light harvesting are discussed for zinc carboxylate frameworks infiltrated with triplet-scavenging organometallic compounds and thiophene- and fullerene-infiltrated MOF-177. In addition, we discuss the mechanism of charge transport in TCNQ-infiltrated HKUST-1, the first MOF with electrical conductivity approaching conducting organic polymers. These examples show that guest molecules in MOF pores should be considered not merely as impurities or analytes to be sensed but also as an important aspect of rational design.
Abstract not provided.
Abstract not provided.