Publications

Results 51–66 of 66

Search results

Jump to search filters

Sandia Fracture Challenge 3: detailing the Sandia Team Q failure prediction strategy

International Journal of Fracture

Karlson, Kyle N.; Alleman, Coleman A.; Laros, James H.; Manktelow, Kevin M.; Ostien, Jakob O.; Stender, Michael S.; Stershic, Andrew J.; Veilleux, Michael V.

The third Sandia Fracture Challenge highlighted the geometric and material uncertainties introduced by modern additive manufacturing techniques. Tasked with the challenge of predicting failure of a complex additively-manufactured geometry made of 316L stainless steel, we combined a rigorous material calibration scheme with a number of statistical assessments of problem uncertainties. Specifically, we used optimization techniques to calibrate a rate-dependent and anisotropic Hill plasticity model to represent material deformation coupled with a damage model driven by void growth and nucleation. Through targeted simulation studies we assessed the influence of internal voids and surface flaws on the specimens of interest in the challenge which guided our material modeling choices. Employing the Kolmogorov–Smirnov test statistic, we developed a representative suite of simulations to account for the geometric variability of test specimens and the variability introduced by material parameter uncertainty. This approach allowed the team to successfully predict the failure mode of the experimental test population as well as the global response with a high degree of accuracy.

More Details

Sierra/SolidMechanics 4.52 Capabilities in Development

Plews, Julia A.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Le, San L.; Manktelow, Kevin M.; Merewether, Mark T.; Mosby, Matthew D.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Xavier, Patrick G.

This user's guide documents capabilities in Sierra/SolidMechanics which remain "in-development" and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 4.52 User's Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as peridynamics and the reproducing kernel particle method (RKPM), numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.

More Details

Sierra/SolidMechanics 4.52 User's Guide: Addendum for Shock Capabilities

Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Le, San L.; Manktelow, Kevin M.; Merewether, Mark T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Xavier, Patrick G.

This is an addendum to the Sierra/SolidMechanics 4.52 User's Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 4.52 User's Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/SolidMechanics 4.52 User's Guide

Plews, Julia A.; Porter, Vicki L.; Merewether, Mark T.; Thomas, Jesse D.; Tupek, Michael R.; Mosby, Matthew D.; San LeSan; Belcourt, Kenneth N.; Xavier, Patrick G.; Shelton, Timothy R.; Beckwith, Frank; Veilleux, Michael G.; Manktelow, Kevin M.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.

More Details

Sierra/SolidMechanics 4.50 Theory Manual

Merewether, Mark T.; Plews, Julia A.; Crane, Nathan K.; de Frias, Gabriel J.; Le, San L.; Littlewood, David J.; Mosby, Matthew D.; Pierson, Kendall H.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Xavier, Patrick G.; Manktelow, Kevin M.; Clutz, Christopher J.R.

Presented in this document are the theoretical aspects of capabilities contained in the Sierra / SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.

More Details

Sierra/SolidMechanics 4.50. Capabilities in Development

Merewether, Mark T.; Plews, Julia A.; Crane, Nathan K.; de Frias, Gabriel J.; Le, San L.; Littlewood, David J.; Mosby, Matthew D.; Pierson, Kendall H.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Xavier, Patrick G.; Clutz, Christopher J.R.; Manktelow, Kevin M.

This document is a user's guide for capabilities that are not considered mature but are available in Sierra/SolidMechanics (Sierra/SM) for early adopters. The determination of maturity of a capability is determined by many aspects: having regression and verification level testing, documentation of functionality and syntax, and usability are such considerations. Capabilities in this document are lacking in one or many of these aspects.

More Details

Sierra/SolidMechanics 4.50 User's Guide

Merewether, Mark T.; Plews, Julia A.; Crane, Nathan K.; de Frias, Gabriel J.; Le, San L.; Littlewood, David J.; Mosby, Matthew D.; Pierson, Kendall H.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Xavier, Patrick G.; Manktelow, Kevin M.; Clutz, Christopher J.R.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.

More Details

Sierra/SolidMechanics 4.46 Verification Tests Manual

Merewether, Mark T.; Plews, Julia A.; Crane, Nathan K.; de Frias, Gabriel J.; Le, San L.; Littlewood, David J.; Mosby, Matthew D.; Pierson, Kendall H.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Xavier, Patrick G.; Clutz, Christopher J.R.; Manktelow, Kevin M.

Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.

More Details

Development of a Multi-physics Capability for Predicting Residual Stress in a GTS Reservoir

Manktelow, Kevin M.; Beghini, Lauren L.

This report documents completion of a Level 2 Milestone on the development of a multi-physics capability to predict the evolving material state through the manufacturing process of a Gas Transfer Systems (GTS) reservoir. We present details on new developments and capability improvements that address the following completion criteria: (i) validation of a microstructure evolution model, including recrystallization and strain aging, (ii) demonstration of the capability to remesh, map and transfer material state (internal state variables) and residual stress from forging to machining to welding processes, and (iii) formal V&V characterization and quantification of uncertainties of material parameters and manufacturing process parameters on residual stress.

More Details

V&V of Residual Stress for GTS

Beghini, Lauren L.; Nelson, Stacy M.; Manktelow, Kevin M.

Residual stresses induced during forging and welding can cause detrimental failure in reservoirs due to enhanced possibility of crack propagation. Therefore, reservoirs must be designed with yield strengths in a tight range. This report summarizes an effort to verify and validate a computational tool that was developed to aid in prediction of the evolution of residual stresses throughout the manufacturing process. The application requirements are identified and summarized in the context of the Predictive Capability Maturity Model (PCMM). The phenomena of interest that the model attempts to capture are discussed and prioritized using the Phenomena Identification and Ranking Table (PIRT) to identify any gaps in our approach. The fidelity of the modeling approach is outlined and details on the implementation and boundary conditions are provided. The code verification requirements are discussed and solution verification is performed, including a mesh convergence study on the series of modeling steps (forging, machining and welding). Validation activities are summarized, including validation of the displacements, residual stresses, recrystallization, yield strength and thermal history. A sensitivity analysis and uncertainty quantification are also performed to understand how variations in the manufacturing process affect the residual stresses.

More Details
Results 51–66 of 66
Results 51–66 of 66