[Copy of characteristics and scaling of tungsten-wire-array z-pinch implosion dynamics at 20 MA.]
Proposed for publication in Physics of Plasmas.
Abstract not provided.
Proposed for publication in Physics of Plasmas.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A new laser trigger system (LTS) has been installed on Z that benefits the experimenter with reduced temporal jitter on the x-ray output, the confidence to use command triggers for time sensitive diagnostics and the ability to shape the current pulse at the load. This paper presents work on the pulse shapping aspects othe the new LTS.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review E.
Abstract not provided.
Physics of Plasmas
Abstract not provided.
Physics of Plasmas
Abstract not provided.
Abstract not provided.
Saturn is a dual-purpose accelerator. It can be operated as a large-area flash x-ray source for simulation testing or as a Z-pinch driver especially for K-line x-ray production. In the first mode, the accelerator is fitted with three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the current of all the modules is combined via a post-hole convolute arrangement and driven through a cylindrical array of very fine wires. We present here a point design for a new Saturn class driver based on a number of linear inductive voltage adders connected in parallel. A technology recently implemented at the Institute of High Current Electronics in Tomsk (Russia) is being utilized. In the present design we eliminate Marx generators and pulse-forming networks. Each inductive voltage adder cavity is directly fed by a number of fast 100-kV small-size capacitors arranged in a circular array around each accelerating gap. The number of capacitors connected in parallel to each cavity defines the total maximum current. By selecting low inductance switches, voltage pulses as short as 30-50-ns FWHM can be directly achieved. The voltage of each stage is low (100-200 kv). Many stages are required to achieve multi-megavolt accelerator output. However, since the length of each stage is very short (4-10 cm), accelerating gradients of higher than 1 MV/m can easily be obtained. The proposed new driver will be capable of delivering pulses of 15-MA, 36-TW, 1.2-MJ to the diode load, with a peak voltage of {minus}2.2 MV and FWHM of 40-ns. And although its performance will exceed the presently utilized driver, its size and cost could be much smaller ({approximately}1/3). In addition, no liquid dielectrics like oil or deionized water will be required. Even elimination of ferromagnetic material (by using air-core cavities) is a possibility.
Physics of Plasmas
A z-pinch radiation source has been developed that generates 60 {+-} 20 KJ of x-rays with a peak power of 13 {+-} 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 {+-} 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 {+-} 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm{sup 3} CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approximately}40% with only a 3--5% decrease in peak temperature, in agreement with measurements.
ZX is a new z-pinch accelerator planned as the next generation z-pinch driver at SNL, and as an intermediate step towards X-1. It is planned to drive either a single 50 MA z-pinch load, or two 25 to 30 MA z pinches. Three designs for the ZX accelerator are presented. All require 7 to 8 MV at the insulator stack to drive the z-pinch load to implosion in 100 to 120 ns. Two of the designs are based on the Z accelerator, and use water-line technology; a transit-time-isolated water adder, and a water transformer. The third design uses inductive-voltage adders in water. They also describe a low-inductance insulator stack design that helps minimize voltage requirements. This design is evaluated for water and vacuum break-down using JCM, THM, and magnetic-flashover-inhibition criteria.