Publications

Results 51–75 of 106

Search results

Jump to search filters

EMPHASIS™/Nevada Unstructured FEM Implementaiton Version 2.1.3. Description, verification, and validation

Turner, C.D.; Pointon, Timothy D.; Cartwright, Keith C.

EMPHASIS™/NEVADA is the SIERRA/NEVADA toolkit implementation of portions of the EMPHASIS TM code suite. The purpose of the toolkit implementation is to facilitate coupling to other physics drivers such as radiation transport as well as to better manage code design, implementation, complexity, and important verification and validation processes. This document describes the theory and implementation of the unstructured finite- element method solver, associated algorithms, and selected verification and validation.

More Details

EMPHASIS™/Nevada UTDEM User Guide Version 2.1.3

Turner, C.D.; Pasik, Michael F.; Seidel, David B.; Pointon, Timothy D.; Cartwright, Keith C.; Kramer, Richard M.; McGregor, Duncan A.; Love, Edward L.

The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest.

More Details

November 2016 HERMES Outdoor Shot Series 10268-313: Spherical Compton Diodes

Yee, Benjamin T.; Cartwright, Keith C.; Pointon, Timothy D.; Wright, Georgia; Moutrie, Michael

In November 2016, the High-Energy Radiation Megavolt Electron Source (HERIVIES)-III gamma simulator was used in a series of physics experiments. As part of the environmental characterization, six Spherical Compton Diodes (SCDs) were fielded in order to measure the dose rate at various locations. This report documents the locations, calibration, compensation, and analysis of these sensors. Several short studies are conducted of the SCD signals examining their change with respect to distance, comparison to other sensors and historical data, evaluation of the log-derivative, and signal behavior with a partially obscured converter. Recommendations for future work includes study and extension of SCD bandwidth, characterization of the HERMES-III output spectrum variability, and study of sensor signals with the courtyard shielded from the top of the Magnetically Insulated Transmission Line (MITL).

More Details

November 2016 HERMES Outdoor Shot Series 10268-313: Air Conductivity Measurements

Yee, Benjamin T.; Cartwright, Keith C.

Of specific concern to this report and the related experiments is ionization of air by gammas rays and the cascading electrons in the High-Energy Radiation Megavolt Electron Source (HERMES) III courtyard. When photons generated by HERMES encounter a neutral atom or molecule, there is a chance that they will interact via one of several mechanisms: photoelectric effect, Compton scattering, or pair production. In both the photoelectric effect and Compton scattering, an electron is liberated from the atom or molecule with a direction of travel preferentially aligned with the gamma ray. This results in a flow of electrons away from the source region, which results in large scale electric and magnetic fields. The strength of these fields and their dynamics are dependent on the conductivity of the air. A more comprehensive description is provided by Longmire and Gilbert.

More Details

November 2016 HERMES Outdoor Shot Series 10268-313: Courtyard Dosimetry and Parametric Fits

Cartwright, Keith C.; Yee, Benjamin T.; Pointon, Timothy D.; Gooding, Renee L.

A series of outdoor shots were conducted at the HERMES III facility in November 2016. There were several goals associated with these experiments, one of which is an improved understanding of the courtyard radiation environment. Previous work had developed parametric fits to the spatial and temporal dose rate in the area of interest. This work explores the inter-shot variation of the dose in the courtyard, updated fit parameters, and an improved dose rate model which better captures high frequency content. The parametric fit for the spatial profile is found to be adequate in the far-field, however near-field radiation dose is still not well-understood.

More Details

November 2016 HERMES Outdoor Shot Series 10268-313: Free Space Fields and Current Coupling

Yee, Benjamin T.; Cartwright, Keith C.; Pointon, Timothy D.

During the trials during November 2016 at the HERMES III facility, a number of sensors were fielded to measure the free fields and currents coupled to aerial and buried cables. Here, we report on the work done to compensate, correct, and analyze these signals. Average results are presented for selected sets of sensors and preliminary analyses are provided of the time and frequency domain signals. Electric fields were typically on the order of 10 kV/m, magnetic fields were approximately 10 AT, and currents were around 10 A. Several opportunities for improvement are identified including quantification of radiation effects on sensors, higher accuracy compensation techniques, increased sensitivity in differential sensor measurements, and exploration of the use of I-dots in conductivity calculations.

More Details

Coupled EM-PIC/Radiation Transport Simulations of HERMES Courtyard Experiments

Pointon, Timothy D.; Cartwright, Keith C.; Renk, Timothy J.; Yee, Benjamin T.

A suite of coupled computational models for simulating the radiation, plasma, and electromagnetic (EM) environment in the High-Energy Radiation Megavolt Electron Source (HERMES) courtyard has been developed. In principle, this provides a predictive forward-simulation capability based solely on measured upstream anode and cathode current waveforms in the Magnetically Insulated Transmission Line (MITL). First, 2D R-Z ElectroMagnetic Particle-in-Cell (EM-PIC) simulations model the MITL and diode to compute a history of all electrons incident on the converter. Next, radiation transport simulations use these electrons as a source to compute the time-dependent dose rate and volumetric electron production in the courtyard. Finally, the radiation transport output is used as sources for EM-PIC simulations of the courtyard to com- pute electromagnetic responses. This suite has been applied to the November 2016 trials, shots 10268-10313. Modeling and experiment differ in significant ways. This is just the first iteration of a long process to improve the agreement, as outlined in the summary.

More Details

ASC ATDM Level 2 Milestone #6358: Assess Status of Next Generation Components and Physics Models in EMPIRE

Bettencourt, Matthew T.; Kramer, Richard M.; Cartwright, Keith C.; Phillips, Edward G.; Ober, Curtis C.; Pawlowski, Roger P.; Swan, Matthew S.; Kalashnikova, Irina; Phipps, Eric T.; Conde, Sidafa C.; Cyr, Eric C.; Ulmer, Craig D.; Kordenbrock, Todd H.; Levy, Scott L.; Templet, Gary J.; Hu, Jonathan J.; Lin, Paul L.; Glusa, Christian A.; Siefert, Christopher S.; Glass, Micheal W.

This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solutions for EMPIRE and its associated solver, time integration, and checkpoint-restart components. This information provides a clear understanding of the current status of the EMPIRE application and will help to guide future work in FY19 in order to ready the application for the ASC ATDM L1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will have to be a focus in FY19.

More Details

ATLOG Modeling of Buried Cables from the November 2016 HERMES Electromagnetic Pulse Experiments

Warne, Larry K.; Campione, Salvatore; Yee, Benjamin T.; Cartwright, Keith C.; Basilio, Lorena I.

This report compares ATLOG modeling results for the response of a finite-length dissipative buried conductor interacting with a conducting ground to a measurement taken November 2016 at the High-Energy Radiation Megavolt Electron Source (HERMES) facility. We use the ATLOG frequency-domain method based on transmission line theory. Estimates of the impedance per unit length and admittance per unit length for a cable laying in a PVC pipe embedded in a concrete block are reported. Current wave shapes from both a single conductor and composite differential mode and antenna mode arrangements are close to those observed in the experiments.

More Details

EMPHASIS™/Nevada UTDEM User Guide Version 2.1.2

Turner, C.D.; Pasik, Michael F.; Seidel, David B.; Pointon, Timothy D.; Cartwright, Keith C.; Kramer, Richard M.; McGregor, Duncan A.

The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell’s equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest.

More Details
Results 51–75 of 106
Results 51–75 of 106