Investigation of the Structural Implications of Hydrogen in Natural Gas Infrastructure
Abstract not provided.
Abstract not provided.
Abstract not provided.
Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science
The effects of internal hydrogen on the deformation microstructures of 304L austenitic stainless steel have been characterized using electron backscattered diffraction (EBSD), transmission Kikuchi diffraction (TKD), high-resolution scanning transmission electron microscopy (HRSTEM), and nanoprobe diffraction. Samples, both thermally precharged with hydrogen and without thermal precharging, were subjected to tensile deformation of 5 and 20 pct true strain followed by multiple microscopic interrogations. Internal hydrogen produced widespread stacking faults within the as-forged initially unstrained material. While planar deformation bands developed with tensile strain in both the hydrogen-precharged and non-precharged material, the character of these bands changed with the presence of internal hydrogen. As shown by nanobeam diffraction and HRSTEM observations, in the absence of internal hydrogen, the bands were predominantly composed of twins, whereas for samples deformed in the presence of internal hydrogen,
International Journal of Hydrogen Energy
Fracture resistance of pipeline welds from a range of strength grades and welding techniques was measured in air and 21 MPa hydrogen gas, including electric resistance weld of X52, friction stir weld of X100 and gas metal arc welds (GMAW) of X52, X65 and X100. Welds exhibited a decrease in fracture resistance in hydrogen compared to complementary tests in air. A general trend was observed that fracture resistance in 21 MPa hydrogen gas decreased with increasing yield strength. To accommodate material constraints, two different fracture coupon geometries were used in this study, which were shown to yield similar fracture resistance values in air and 21 MPa hydrogen gas; values using different coupons resulted in less than 15% difference. In addition, fracture coupons were removed from controlled locations in select welds to examine the potential influence of orientation and residual stress. The two orientations examined in the X100 GMAW exhibited negligible differences in fracture resistance in air and, similarly, negligible differences in hydrogen. Residual stress exhibited a modest influence on fracture resistance; however, a consistent trend was not observed between tests in air and hydrogen, suggesting further studies are necessary to better understand the influence of residual stress. A comparison of welds and base metals tested in hydrogen gas showed similar susceptibility to hydrogen-assisted fracture. The overall dominant factor in determining the susceptibility to fracture resistance in hydrogen is the yield strength.
Abstract not provided.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Hydrogen additions to natural gas are being considered around the globe as a means to utilize existing infrastructure to distribute hydrogen. Hydrogen is known to enhance fatigue crack growth and reduce fracture resistance of structural steels used for pressure vessels, piping and pipelines. Most research has focused on high-pressure hydrogen environments for applications of storage (>100 MPa) and delivery (10-20 MPa) in the context of hydrogen fuel cell vehicles, which typically store hydrogen onboard at pressure of 70 MPa. In applications of blending hydrogen into natural gas, a wide range of hydrogen contents are being considered, typically in the range of 2-20%. In natural gas infrastructure, the pressure differs depending on location in the system (i.e., transmission systems are relatively high pressure compared to low-pressure distribution systems), thus the anticipated partial pressure of hydrogen can be less than an atmosphere or more than 10 MPa. In this report, it is shown that low partial pressure hydrogen has a very strong effect on fatigue and fracture behavior of infrastructure steels. While it is acknowledged that materials compatibility with hydrogen will be important for systems operating with high stresses, the effects of hydrogen do not seem to be a significant threat for systems operating at low pressure as in distribution infrastructure. In any case, system operators considering the addition of hydrogen to their network must carefully consider the structural performance of their system and the significant effects of hydrogen on structural integrity, as fatigue and fracture properties of all steels in the natural gas infrastructure will be degraded by hydrogen, even for partial pressure of hydrogen less than 0.1 MPa.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
High pressure Type 2 hoop-wrapped, thick-walled vessels are commonly used at hydrogen refueling stations. Vessels installed at stations circa 2010 are now reaching their design cycle limit and are being retired, which is the motivation for exploring life extension opportunities. The number of design cycles is based on a fatigue life calculation using a fracture mechanics assessment according to ASME Section VIII, Division 3, which assumes each cycle is the full pressure range identified in the User's Design Specification for a given pressure vessel design; however, assessment of service data reveals that the actual pressure cycles are more conservative than the design specification. A case study was performed in which in-service pressure cycles were used to re-calculate the design cycles. It was found that less than 1% of the allowable crack extension was consumed when crack growth was assessed using in-service design pressures compared to the original design fatigue life from 2010. Additionally, design cycles were assessed on the 2010 era vessels based on design curves from the recently approved ASME Code Case 2938, which were based on fatigue crack growth rate relationships over a broader range of K. Using the Code Case 2938 design curves yielded nearly 2.7 times greater design cycles compared to the 2010 vessel original design basis. The benefits of using inservice pressure cycles to assess the design life and the implications of using the design curves in Code Case 2938 are discussed in detail in this paper.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Objectives of the project include: Enable the use of high strength steel hydrogen pipelines, as significant cost savings can result by implementing high strength steels as compared to lower strength pipes. Demonstrate that girth welds in high-strength steel pipe exhibit fatigue performance similar to lower-strength steels in high-pressure hydrogen gas. Identify pathways for developing high-strength pipeline steels by establishing the relationship between microstructure constituents and hydrogen-accelerated fatigue crack growth (HA-FCG)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Hydrogen Energy
The fatigue crack growth behavior of Ti–10V–2Fe–3Al in gaseous hydrogen (H2) was assessed through comparative experiments conducted in laboratory air and 8.3 MPa H2. The measured fatigue crack growth rate (da/dN) versus applied stress intensity factor range (ΔK) relationships and observed fracture morphologies for laboratory air and H2 were comparable up to ΔK ≈ 6.9 MPa√m, when tested at a load ratio of 0.1 and frequency of 10 Hz. At higher ΔK values, significant crack deflection and subsequent catastrophic failure occurred in the specimen tested in H2. This degradation was not observed in a specimen pre-exposed to 8.3 MPa H2 for 96 h and then immediately tested in laboratory air. X-ray diffraction of the failed H2-tested specimen revealed that the material remnants were predominantly composed of TiH2, suggesting that hydride formation was the catalyst for catastrophic failure in H2. The mechanistic implications of these results and their impact on current material compatibility assessments for Ti alloys in hydrogen service are then discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.