Publications

Results 51–75 of 218

Search results

Jump to search filters

Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence

Frontiers in Computational Neuroscience

Chance, Frances S.; Aimone, James B.; Musuvathy, Srideep S.; Smith, Michael R.; Vineyard, Craig M.; Wang, Felix W.

Historically, neuroscience principles have heavily influenced artificial intelligence (AI), for example the influence of the perceptron model, essentially a simple model of a biological neuron, on artificial neural networks. More recently, notable recent AI advances, for example the growing popularity of reinforcement learning, often appear more aligned with cognitive neuroscience or psychology, focusing on function at a relatively abstract level. At the same time, neuroscience stands poised to enter a new era of large-scale high-resolution data and appears more focused on underlying neural mechanisms or architectures that can, at times, seem rather removed from functional descriptions. While this might seem to foretell a new generation of AI approaches arising from a deeper exploration of neuroscience specifically for AI, the most direct path for achieving this is unclear. Here we discuss cultural differences between the two fields, including divergent priorities that should be considered when leveraging modern-day neuroscience for AI. For example, the two fields feed two very different applications that at times require potentially conflicting perspectives. We highlight small but significant cultural shifts that we feel would greatly facilitate increased synergy between the two fields.

More Details

The Future of Computing: Integrating Scientific Computation on Neuromorphic Systems

Reeder, Leah; Aimone, James B.; Severa, William M.

Neuromorphic computing is known for its integration of algorithms and hardware elements that are inspired by the brain. Conventionally, this nontraditional method of computing is used for many neural or learning inspired applications. Unfortunately, this has resulted in the field of neuromorphic computing being relatively narrow in scope. In this paper we discuss two research areas actively trying to widen the impact of neuromorphic systems. The first is Fugu, a high-level programming interface designed to bridge the gap between general computer scientists and those who specialize in neuromorphic areas. The second aims to map classical scientific computing problems onto these frameworks through the example of random walks. This elucidates a class of scientific applications that are conducive to neuromorphic algorithms.

More Details

BrainSLAM

Wang, Felix W.; Aimone, James B.; Musuvathy, Srideep S.; Anwar, Abrar

This research aims to develop brain-inspired solutions for reliable and adaptive autonomous navigation in systems that have limited internal and external sensors and may not have access to reliable GPS information. The algorithms investigated and developed by this project was performed in the context of Sandas A4H (autonomy for hypersonics) mission campaign. These algorithms were additionally explored with respect to their suitability for implementation on emerging neuromorphic computing hardware technology. This project is premised on the hypothesis that brain-inspired SLAM (simultaneous localization and mapping) algorithms may provide an energy-efficient, context-flexible approach to robust sensor-based, real-time navigation.

More Details

Composing neural algorithms with Fugu

ACM International Conference Proceeding Series

Aimone, James B.; Severa, William M.; Vineyard, Craig M.

Neuromorphic hardware architectures represent a growing family of potential post-Moore's Law Era platforms. Largely due to event-driving processing inspired by the human brain, these computer platforms can offer significant energy benefits compared to traditional von Neumann processors. Unfortunately there still remains considerable difficulty in successfully programming, configuring and deploying neuromorphic systems. We present the Fugu framework as an answer to this need. Rather than necessitating a developer attain intricate knowledge of how to program and exploit spiking neural dynamics to utilize the potential benefits of neuromorphic computing, Fugu is designed to provide a higher level abstraction as a hardware-independent mechanism for linking a variety of scalable spiking neural algorithms from a variety of sources. Individual kernels linked together provide sophisticated processing through compositionality. Fugu is intended to be suitable for a wide-range of neuromorphic applications, including machine learning, scientific computing, and more brain-inspired neural algorithms. Ultimately, we hope the community adopts this and other open standardization attempts allowing for free exchange and easy implementations of the ever-growing list of spiking neural algorithms.

More Details
Results 51–75 of 218
Results 51–75 of 218