Leveraging Random Walks to Solve IPDEs on Spiking Neuromorphic Hardware
Abstract not provided.
Abstract not provided.
Neuromorphic computing is known for its integration of algorithms and hardware elements that are inspired by the brain. Conventionally, this nontraditional method of computing is used for many neural or learning inspired applications. Unfortunately, this has resulted in the field of neuromorphic computing being relatively narrow in scope. In this paper we discuss two research areas actively trying to widen the impact of neuromorphic systems. The first is Fugu, a high-level programming interface designed to bridge the gap between general computer scientists and those who specialize in neuromorphic areas. The second aims to map classical scientific computing problems onto these frameworks through the example of random walks. This elucidates a class of scientific applications that are conducive to neuromorphic algorithms.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This research aims to develop brain-inspired solutions for reliable and adaptive autonomous navigation in systems that have limited internal and external sensors and may not have access to reliable GPS information. The algorithms investigated and developed by this project was performed in the context of Sandas A4H (autonomy for hypersonics) mission campaign. These algorithms were additionally explored with respect to their suitability for implementation on emerging neuromorphic computing hardware technology. This project is premised on the hypothesis that brain-inspired SLAM (simultaneous localization and mapping) algorithms may provide an energy-efficient, context-flexible approach to robust sensor-based, real-time navigation.
Abstract not provided.
ACM International Conference Proceeding Series
Neuromorphic hardware architectures represent a growing family of potential post-Moore's Law Era platforms. Largely due to event-driving processing inspired by the human brain, these computer platforms can offer significant energy benefits compared to traditional von Neumann processors. Unfortunately there still remains considerable difficulty in successfully programming, configuring and deploying neuromorphic systems. We present the Fugu framework as an answer to this need. Rather than necessitating a developer attain intricate knowledge of how to program and exploit spiking neural dynamics to utilize the potential benefits of neuromorphic computing, Fugu is designed to provide a higher level abstraction as a hardware-independent mechanism for linking a variety of scalable spiking neural algorithms from a variety of sources. Individual kernels linked together provide sophisticated processing through compositionality. Fugu is intended to be suitable for a wide-range of neuromorphic applications, including machine learning, scientific computing, and more brain-inspired neural algorithms. Ultimately, we hope the community adopts this and other open standardization attempts allowing for free exchange and easy implementations of the ever-growing list of spiking neural algorithms.
Abstract not provided.
Abstract not provided.
Communications of the ACM
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Electronics
A hybrid analogue–digital computing system based on memristive devices is capable of solving classic control problems with potentially a lower energy consumption and higher speed than fully digital systems.
IEEE Access
Emerging memory devices, such as resistive crossbars, have the capacity to store large amounts of data in a single array. Acquiring the data stored in large-capacity crossbars in a sequential fashion can become a bottleneck. We present practical methods, based on sparse sampling, to quickly acquire sparse data stored on emerging memory devices that support the basic summation kernel, reducing the acquisition time from linear to sub-linear. The experimental results show that at least an order of magnitude improvement in acquisition time can be achieved when the data are sparse. In addition, we show that the energy cost associated with our approach is competitive to that of the sequential method.
Abstract not provided.
IEEE Access
Emerging memory devices, such as resistive crossbars, have the capacity to store large amounts of data in a single array. Acquiring the data stored in large-capacity crossbars in a sequential fashion can become a bottleneck. We present practical methods, based on sparse sampling, to quickly acquire sparse data stored on emerging memory devices that support the basic summation kernel, reducing the acquisition time from linear to sub-linear. The experimental results show that at least an order of magnitude improvement in acquisition time can be achieved when the data are sparse. Finally, in addition, we show that the energy cost associated with our approach is competitive to that of the sequential method.
Proceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017
A forensics investigation after a breach often uncovers network and host indicators of compromise (IOCs) that can be deployed to sensors to allow early detection of the adversary in the future. Over time, the adversary will change tactics, techniques, and procedures (TTPs), which will also change the data generated. If the IOCs are not kept up-to-date with the adversary's new TTPs, the adversary will no longer be detected once all of the IOCs become invalid. Tracking the Known (TTK) is the problem of keeping IOCs, in this case regular expression (regexes), up-to-date with a dynamic adversary. Our framework solves the TTK problem in an automated, cyclic fashion to bracket a previously discovered adversary. This tracking is accomplished through a data-driven approach of self-adapting a given model based on its own detection capabilities.In our initial experiments, we found that the true positive rate (TPR) of the adaptive solution degrades much less significantly over time than the naïve solution, suggesting that self-updating the model allows the continued detection of positives (i.e., adversaries). The cost for this performance is in the false positive rate (FPR), which increases over time for the adaptive solution, but remains constant for the naïve solution. However, the difference in overall detection performance, as measured by the area under the curve (AUC), between the two methods is negligible. This result suggests that self-updating the model over time should be done in practice to continue to detect known, evolving adversaries.