Publications

Results 101–125 of 142

Search results

Jump to search filters

Self-assembled nanolaminate coatings (SV)

Fan, Hongyou F.

Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV, etc.). The SANC technologies will establish LMA and related US manufacturing capability for commercial and military applications therefore reducing reliance on off-shore development and production of related critical technologies. If these technologies are successfully licensed, production of these coatings in manufactory will create significant technical employment opportunities.

More Details

Real-time studies of battery electrochemical reactions inside a transmission electron microscope

Sullivan, J.P.; Huang, Jian Y.; Leung, Kevin L.; Shaw, Michael S.; Fan, Hongyou F.; Liu, Xiaohua L.; Liu, Yang; Hudak, Nicholas H.

We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

More Details

Nanomanufacturing : nano-structured materials made layer-by-layer

Schunk, Randy; Grest, Gary S.; Chandross, M.; Reedy, Earl D.; Cox, James C.; Fan, Hongyou F.; Roberts, Scott A.

Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

More Details

Neural assembly models derived through nano-scale measurements

Fan, Hongyou F.; Forsythe, James C.; Branda, Catherine B.; Warrender, Christina E.; Schiek, Richard S.

This report summarizes accomplishments of a three-year project focused on developing technical capabilities for measuring and modeling neuronal processes at the nanoscale. It was successfully demonstrated that nanoprobes could be engineered that were biocompatible, and could be biofunctionalized, that responded within the range of voltages typically associated with a neuronal action potential. Furthermore, the Xyce parallel circuit simulator was employed and models incorporated for simulating the ion channel and cable properties of neuronal membranes. The ultimate objective of the project had been to employ nanoprobes in vivo, with the nematode C elegans, and derive a simulation based on the resulting data. Techniques were developed allowing the nanoprobes to be injected into the nematode and the neuronal response recorded. To the authors's knowledge, this is the first occasion in which nanoparticles have been successfully employed as probes for recording neuronal response in an in vivo animal experimental protocol.

More Details

Lithographically defined carbon growth templates for ELOG of GaN

Journal of Crystal Growth

Burckel, D.B.; Fan, Hongyou F.; Thaler, Gerald T.; Koleske, Daniel K.

We report the initial use of lithographically defined carbon growth templates for use as an epitaxial lateral overgrowth (ELOG) mask for metalorganic chemical vapor deposition (MOCVD) heteroepitaxial GaN on sapphire. Interferometric lithography is used to define high aspect ratio structures in SU-8, which are then pyrolyzed in a reducing atmosphere up to 1200 °C. The resist structures convert to amorphous carbon, shrinking 80% in the vertical direction and 53% in the horizontal direction, but maintain their pattern geometry and adhesion to the substrate. These templates are capable of surviving GaN nucleation layer growth temperatures (∼530 °C), GaN crystal growth and high-temperature annealing up to 1050 °C. This new approach to ELOG offers several advantages, requiring fewer processing steps, and favorable selectivity tendencies as well as the capability to create growth masks which are difficult or impossible to fabricate using a top-down etching approach. © 2008 Elsevier B.V. All rights reserved.

More Details

Nanoporous films for epitaxial growth of single crystal semiconductor materials : final LDRD report

Burckel, David B.; Fan, Hongyou F.; Koleske, Daniel K.; Williams, John D.; Steen, William A.; Rowen, Adam M.

This senior council Tier 1 LDRD was focused on exploring the use of porous growth masks as a method for defect reduction during heteroepitaxial crystal growth. Initially our goal was to investigate porous silica as a growth mask, however, we expanded the scope of the research to include several other porous growth masks on various size scales, including mesoporous carbon, photolithographically patterned SU-8 and carbonized SU-8 structures. Use of photolithographically defined growth templates represents a new direction, unique in the extensive literature of patterned epitaxial growth, and presents the possibility of providing a single step growth mask. Additional research included investigation of pore viability via electrochemical deposition into high aspect ratio photoresist. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

More Details

Synthesis and self-assembly of fcc phase FePt nanorods

Journal of the American Chemical Society

Chen, Min; Pica, Timothy; Jiang, Ying B.; Li, Peng; Yano, Kazuaki; Liu, J.P.; Datye, Abhaya K.; Fan, Hongyou F.

We report a synthesis of FePt nanorods by confining decomposition of Fe(CO)5 and reduction of Pt(caca)2 in surfactant reverse cylindrical micelles. The controlled nucleation and growth kinetics in confined environment allows easy control over Fe/Pt composition, nanorod uniformity, and nanorod aspect ratio. The FePt nanorods tend to self-assemble into ordered arrays along three-dimensions. Directed assembly under external magnetic field leads to two-dimensional ordered arrays, parallel to the substrate magnetic field. We expect that with optimized external magnetic fields, we should be able to assemble these nanorods into orientated one or two-dimensional arrays, providing a uniform anisotropic magnetic platform for varied applications in enhanced data storage, magneto-electron transport, etc. Copyright © 2007 American Chemical Society.

More Details
Results 101–125 of 142
Results 101–125 of 142