Application of Multifidelity Uncertainty Quantification Towards Multi-turbine Interaction and Wake Characterization
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2021
The accurate construction of a surrogate model is an effective and efficient strategy for performing Uncertainty Quantification (UQ) analyses of expensive and complex engineering systems. Surrogate models are especially powerful whenever the UQ analysis requires the computation of statistics which are difficult and prohibitively expensive to obtain via a direct sampling of the model, e.g. high-order moments and probability density functions. In this paper, we discuss the construction of a polynomial chaos expansion (PCE) surrogate model for radiation transport problems for which quantities of interest are obtained via Monte Carlo simulations. In this context, it is imperative to account for the statistical variability of the simulator as well as the variability associated with the uncertain parameter inputs. More formally, in this paper we focus on understanding the impact of the Monte Carlo transport variability on the recovery of the PCE coefficients. We are able to identify the contribution of both the number of uncertain parameter samples and the number of particle histories simulated per sample in the PCE coefficient recovery. Our theoretical results indicate an accuracy improvement when using few Monte Carlo histories per random sample with respect to configurations with an equivalent computational cost. These theoretical results are numerically illustrated for a simple synthetic example and two configurations of a one-dimensional radiation transport problem in which a slab is represented by means of materials with uncertain cross sections.
International Journal for Uncertainty Quantification
Network modeling is a powerful tool to enable rapid analysis of complex systems that can be challenging to study directly using physical testing. Two approaches are considered: emulation and simulation. The former runs real software on virtualized hardware, while the latter mimics the behavior of network components and their interactions in software. Although emulation provides an accurate representation of physical networks, this approach alone cannot guarantee the characterization of the system under realistic operative conditions. Operative conditions for physical networks are often characterized by intrinsic variability (payload size, packet latency, etc.) or a lack of precise knowledge regarding the network configuration (bandwidth, delays, etc.); therefore uncertainty quantification (UQ) strategies should be also employed. UQ strategies require multiple evaluations of the system with a number of evaluation instances that roughly increases with the problem dimensionality, i.e., the number of uncertain parameters. It follows that a typical UQ workflow for network modeling based on emulation can easily become unattainable due to its prohibitive computational cost. In this paper, a multifidelity sampling approach is discussed and applied to network modeling problems. The main idea is to optimally fuse information coming from simulations, which are a low-fidelity version of the emulation problem of interest, in order to decrease the estimator variance. By reducing the estimator variance in a sampling approach it is usually possible to obtain more reliable statistics and therefore a more reliable system characterization. Several network problems of increasing difficulty are presented. For each of them, the performance of the multifidelity estimator is compared with respect to the single fidelity counterpart, namely, Monte Carlo sampling. For all the test problems studied in this work, the multifidelity estimator demonstrated an increased efficiency with respect to MC.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal for Uncertainty Quantification
This paper presents a multifidelity uncertainty quantification framework called MFNets. We seek to address three existing challenges that arise when experimental and simulation data from different sources are used to enhance statistical estimation and prediction with quantified uncertainty. Specifically, we demonstrate that MFNets can (1) fuse heterogeneous data sources arising from simulations with different parameterizations, e.g simulation models with different uncertain parameters or data sets collected under different environmental conditions; (2) encode known relationships among data sources to reduce data requirements; and (3) improve the robustness of existing multi-fidelity approaches to corrupted data. MFNets construct a network of latent variables (LVs) to facilitate the fusion of data from an ensemble of sources of varying credibility and cost. These LVs are posited as explanatory variables that provide the source of correlation in the observed data. Furthermore, MFNets provide a way to encode prior physical knowledge to enable efficient estimation of statistics and/or construction of surrogates via conditional independence relations on the LVs. We highlight the utility of our framework with a number of theoretical results which assess the quality of the posterior mean as a frequentist estimator and compare it to standard sampling approaches that use single fidelity, multilevel, and control variate Monte Carlo estimators. We also use the proposed framework to derive the Monte Carlo-based control variate estimator entirely from the use of Bayes rule and linear-Gaussian models -- to our knowledge the first such derivation. Finally, we demonstrate the ability to work with different uncertain parameters across different models.
International Journal for Uncertainty Quantification
Abstract not provided.
Abstract not provided.
Computer Methods in Applied Mechanics and Engineering
Standard approaches for uncertainty quantification in cardiovascular modeling pose challenges due to the large number of uncertain inputs and the significant computational cost of realistic three-dimensional simulations. We propose an efficient uncertainty quantification framework utilizing a multilevel multifidelity Monte Carlo (MLMF) estimator to improve the accuracy of hemodynamic quantities of interest while maintaining reasonable computational cost. This is achieved by leveraging three cardiovascular model fidelities, each with varying spatial resolution to rigorously quantify the variability in hemodynamic outputs. We employ two low-fidelity models (zero- and one-dimensional) to construct several different estimators. Our goal is to investigate and compare the efficiency of estimators built from combinations of these two low-fidelity model alternatives and our high-fidelity three-dimensional models. We demonstrate this framework on healthy and diseased models of aortic and coronary anatomy, including uncertainties in material property and boundary condition parameters. Our goal is to demonstrate that for this application it is possible to accelerate the convergence of the estimators by utilizing a MLMF paradigm. Therefore, we compare our approach to single fidelity Monte Carlo estimators and to a multilevel Monte Carlo approach based only on three-dimensional simulations, but leveraging multiple spatial resolutions. We demonstrate significant, on the order of 10 to 100 times, reduction in total computational cost with the MLMF estimators. We also examine the differing properties of the MLMF estimators in healthy versus diseased models, as well as global versus local quantities of interest. As expected, global quantities such as outlet pressure and flow show larger reductions than local quantities, such as those relating to wall shear stress, as the latter rely more heavily on the highest fidelity model evaluations. Similarly, healthy models show larger reductions than diseased models. In all cases, our workflow coupling Dakota's MLMF estimators with the SimVascular cardiovascular modeling framework makes uncertainty quantification feasible for constrained computational budgets.
This report documents a statistical method for the "real-time" characterization of partially observed epidemics. Observations consist of daily counts of symptomatic patients, diagnosed with the disease. Characterization, in this context, refers to estimation of epidemiological parameters that can be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross information for the time-dependent infection rate. The characterization problem is formulated as a Bayesian inverse problem, and is predicated on a model for the distribution of the incubation period. The model parameters are estimated as distributions using a Markov Chain Monte Carlo (MCMC) method, thus quantifying the uncertainty in the estimates. The method is applied to the COVID-19 pandemic of 2020, using data at the country, provincial (e.g., states) and regional (e.g. county) levels. The epidemiological model includes a stochastic component due to uncertainties in the incubation period. This model-form uncertainty is accommodated by a pseudo-marginal Metropolis-Hastings MCMC sampler, which produces posterior distributions that reflect this uncertainty. We approximate the discrepancy between the data and the epidemiological model using Gaussian and negative binomial error models; the latter was motivated by the over-dispersed count data. For small daily counts we find the performance of the calibrated models to be similar for the two error models. For large daily counts the negative-binomial approximation is numerically unstable unlike the Gaussian error model. Application of the model at the country level (for the United States, Germany, Italy, etc.) generally provided accurate forecasts, as the data consisted of large counts which suppressed the day-to-day variations in the observations. Further, the bulk of the data is sourced over the duration before the relaxation of the curbs on population mixing, and is not confounded by any discernible country-wide second wave of infections. At the state-level, where reporting was poor or which evinced few infections (e.g., New Mexico), the variance in the data posed some, though not insurmountable, difficulties, and forecasts were able to capture the data with large uncertainty bounds. The method was found to be sufficiently sensitive to discern the flattening of the infection and epidemic curve due to shelter-in-place orders after around 90% quantile for the incubation distribution (about 10 days for COVID-19). The proposed model was also used at a regional level to compare the forecasts for the central and north-west regions of New Mexico. Modeling the data for these regions illustrated different disease spread dynamics captured by the model. While in the central region the daily counts peaked in the late April, in the north-west region the ramp-up continued for approximately three more weeks.
Journal of Computational Physics
We describe and analyze a variance reduction approach for Monte Carlo (MC) sampling that accelerates the estimation of statistics of computationally expensive simulation models using an ensemble of models with lower cost. These lower cost models — which are typically lower fidelity with unknown statistics — are used to reduce the variance in statistical estimators relative to a MC estimator with equivalent cost. We derive the conditions under which our proposed approximate control variate framework recovers existing multifidelity variance reduction schemes as special cases. We demonstrate that existing recursive/nested strategies are suboptimal because they use the additional low-fidelity models only to efficiently estimate the unknown mean of the first low-fidelity model. As a result, they cannot achieve variance reduction beyond that of a control variate estimator that uses a single low-fidelity model with known mean. However, there often exists about an order-of-magnitude gap between the maximum achievable variance reduction using all low-fidelity models and that achieved by a single low-fidelity model with known mean. We show that our proposed approach can exploit this gap to achieve greater variance reduction by using non-recursive sampling schemes. The proposed strategy reduces the total cost of accurately estimating statistics, especially in cases where only low-fidelity simulation models are accessible for additional evaluations. Several analytic examples and an example with a hyperbolic PDE describing elastic wave propagation in heterogeneous media are used to illustrate the main features of the methodology.
The Dakota toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.
Abstract not provided.
Journal of Computational Physics
Particle-laden turbulent flows subject to radiative heating are relevant in many applications, for example concentrated solar power receivers. Efficient and accurate simulations provide valuable insights and enable optimization of such systems. However, as there are many uncertainties inherent in such flows, uncertainty quantification is fundamental to improve the predictive capabilities of the numerical simulations. For large-scale, multi-physics problems exhibiting high-dimensional uncertainty, characterizing the stochastic solution presents a significant computational challenge as most strategies require a large number of high-fidelity solves. This requirement might result in an infeasible number of simulations when a typical converged high-fidelity simulation requires intensive computational resources. To reduce the cost of quantifying high-dimensional uncertainties, we investigate the application of a non-intrusive, bi-fidelity approximation to estimate statistics of quantities of interest associated with an irradiated particle-laden turbulent flow. This method exploits the low-rank structure of the solution to accelerate the stochastic sampling and approximation processes by means of cheaper-to-run, lower fidelity representations. The application of this bi-fidelity approximation results in accurate estimates of the quantities of interest statistics, while requiring a small number of high-fidelity model evaluations.
Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018
Predictions from numerical hemodynamics are increasingly adopted and trusted in the diagnosis and treatment of cardiovascular disease. However, the predictive abilities of deterministic numerical models are limited due to the large number of possible sources of uncertainty including boundary conditions, vessel wall material properties, and patient specific model anatomy. Stochastic approaches have been proposed as a possible improvement, but are penalized by the large computational cost associated with repeated solutions of the underlying deterministic model. We propose a stochastic framework which leverages three cardiovascular model fidelities, i.e., three-, one- and zero-dimensional representations of cardiovascular blood flow. Specifically, we employ multilevel and multifidelity estimators from Sandia's open-source Dakota toolkit to reduce the variance in our estimated quantities of interest, while maintaining a reasonable computational cost. The performance of these estimators in terms of computational cost reductions is investigated for both global and local hemodynamic indicators.
Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018
SNOWPAC (Stochastic Nonlinear Optimization With Path-Augmented Constraints) is a method for stochastic nonlinear constrained derivative-free optimization. For such problems, it extends the path-augmented constraints framework introduced by the deterministic optimization method NOWPAC and uses a noise-adapted trust region approach and Gaussian processes for noise reduction. In recent developments, SNOWPAC is available in the DAKOTA framework which offers a highly flexible interface to couple the optimizer with different sampling strategies or surrogate models. In this paper we discuss details of SNOWPAC and demonstrate the coupling with DAKOTA. We showcase the approach by presenting design optimization results of a shape in a 2D supersonic duct. This simulation is supposed to imitate the behavior of the flow in a SCRAMJET simulation but at a much lower computational cost. Additionally different mesh or model fidelities can be tested. Thus, it serves as a convenient test case before moving to costly SCRAMJET computations. Here, we study deterministic results and results obtained by introducing uncertainty on inflow parameters. As sampling strategies we compare classical Monte Carlo sampling with multilevel Monte Carlo approaches for which we developed new error estimators. All approaches show a reasonable optimization of the design over the objective while maintaining or seeking feasibility. Furthermore, we achieve significant reductions in computational cost by using multilevel approaches that combine solutions from different grid resolutions.