Model Ensemble Configuration for Multifidelity UQ
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computational Mechanics
We present an approach for constructing a surrogate from ensembles of information sources of varying cost and accuracy. The multifidelity surrogate encodes connections between information sources as a directed acyclic graph, and is trained via gradient-based minimization of a nonlinear least squares objective. While the vast majority of state-of-the-art assumes hierarchical connections between information sources, our approach works with flexibly structured information sources that may not admit a strict hierarchy. The formulation has two advantages: (1) increased data efficiency due to parsimonious multifidelity networks that can be tailored to the application; and (2) no constraints on the training data—we can combine noisy, non-nested evaluations of the information sources. Finally, numerical examples ranging from synthetic to physics-based computational mechanics simulations indicate the error in our approach can be orders-of-magnitude smaller, particularly in the low-data regime, than single-fidelity and hierarchical multifidelity approaches.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
Predictive analysis of complex computational models, such as uncertainty quantification (UQ), must often rely on using an existing database of simulation runs. In this paper we consider the task of performing low-multilinear-rank regression on such a database. Specifically we develop and analyze an efficient gradient computation that enables gradient-based optimization procedures, including stochastic gradient descent and quasi-Newton methods, for learning the parameters of a functional tensor-train (FT). We compare our algorithms with 22 other nonparametric and parametric regression methods on 10 real-world data sets and show that for many physical systems, exploiting low-rank structure facilitates efficient construction of surrogate models. We use a number of synthetic functions to build insight into behavior of our algorithms, including the rank adaptation and group-sparsity regularization procedures that we developed to reduce overfitting. Finally we conclude the paper by building a surrogate of a physical model of a propulsion plant on a naval vessel.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.