Multimodel Methods for Uncertainty Quantification of Repository Systems
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Transactions of the American Nuclear Society
Abstract not provided.
Transactions of the American Nuclear Society
Abstract not provided.
Transactions of the American Nuclear Society
Abstract not provided.
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Multi-model Monte Carlo methods have been illustrated to be an efficient and accurate alternative to standard Monte Carlo (MC) in the model-based propagation of uncertainty in entry, descent, and landing (EDL) applications. These multi-model MC methods fuse predictions from low-fidelity models with the high-fidelity EDL model of interest to produce unbiased statistics with a fraction of the computational cost. The accuracy and efficiency of the multi-model MC methods are dependent upon the magnitude of correlations of the low-fidelity models with the high-fidelity model, but also upon the correlation amongst the low-fidelity models, and their relative computational cost. Because of this layer of complexity, the question of how to optimally select the set of low-fidelity models has remained open. In this work, methods for optimal model construction and tuning are investigated as a means to increase the speed and precision of trajectory simulation for EDL. Specifically, the focus is on the inclusion of low-fidelity model tuning within the sample allocation optimization that accompanies multi-model MC methods. Results indicate that low-fidelity model tuning can significantly improve efficiency and precision of trajectory simulations and provide an increased edge to multi-model MC methods when compared to standard MC.
Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting
Abstract not provided.
Abstract not provided.
Abstract not provided.