Publications

Results 1–25 of 30

Search results

Jump to search filters

Synthesis and crystal structure of 2,9-diamino-5,6,11,12-tetrahydrodibenzo[a,e]cyclooctene

Acta Crystallographica Section E: Crystallographic Communications

Valdez, Nichole R.; Nagel, Eric; Redline, Erica M.; Rodriguez, Mark A.; Staiger, Chad S.; Dugger, Jason W.; Foster, Jeffrey

The cis- form of diaminodibenzocyclooctane (DADBCO, C16H18N2) is of interest as a negative coefficient of thermal expansion (CTE) material. The crystal structure was determined through single-crystal X-ray diffraction at 100 K and is presented herein.

More Details

Simulations of Glass Transition and Mechanical Behavior of Off-Stoichiometric Crosslinked Polymers

Macromolecules

Bezik, Cody T.; Foster, Jeffrey C.; Redline, Erica M.; Frischknecht, Amalie F.

This work explores the influence of blend composition, network architecture, and hydrogen bonding on the material properties of crosslinked epoxy networks, focusing on the glass transition temperature (Tg) and Young’s modulus (Y). We used coarse-grained molecular dynamics simulations to simulate varying compositions of stiff and flexible components in epoxy monomer blends with varying excess of curative. We find that, without hydrogen bonding, networks of any composition show a monotonically increasing Tg with decreasing excess curative, consistent with theory. In contrast, we find that when hydrogen bonding is introduced, the binary blend networks show significant enhancement in Tg for lightly crosslinked systems. This result contributes to an explanation of the anomalous Tg behavior observed experimentally in these systems. We further find that Y is generally enhanced by hydrogen bonds, especially below Tg, demonstrating that hydrogen bonding has a significant influence on mechanical properties and can allow access to other desirable dynamic behavior, especially self-healing.

More Details

Unexpected Thermomechanical Behavior of Off-Stoichiometry Epoxy/Amine Materials

Macromolecules

Foster, Jeffrey C.; Laros, James H.; Yoon, Alana Y.; Martinez, Estevan J.; Leguizamon, Samuel C.; Bezik, Cody T.; Frischknecht, Amalie F.; Redline, Erica M.

Recent studies on off-stoichiometric thermosets reveal unique viscoelastic behavior derived from increased free volume and physical interactions between chain ends. To understand structural characteristics arising from cure and its effect on properties, we developed a Monte Carlo model based on step-growth polymerization. Our model accurately predicted structure-property trends for a two-component system of EPON 828 (EPON) and ethylenediamine. A second epoxy monomer, D.E.R. 732 (DER), was investigated to modulate Tg. Binary mixtures of EPON and DER in off-stoichiometric, amine-rich formulations resulted in nonlinear evolution of thermomechanical properties with respect to initial formulation stoichiometry. Modifying our model with kinetic parameters allowing for differential epoxide/amine reaction kinetics only partially accounted for trends in Tg, suggesting that spatiotemporal contributions─not captured by our model─were significant determinants of material properties compared to polymer architecture for three-component systems. These findings underpin the importance of spatial awareness in modeling to inform the development of dynamic thermosets.

More Details

"Did you eat a MOLEcule today?" An Interactive Demonstration of Molecular Weight with Real-Time Breath Analysis Using Mass Spectrometry for All Ages

Journal of the American Society for Mass Spectrometry

Kustas, Jessica K.; Redline, Erica M.; Mowry, Curtis D.

Although mass spectrometry is a widely used analytical tool, age-appropriate, interactive outreach activities for laboratory visitors, especially children, are lacking. The presented interactive demonstration, "Did you eat a MOLEcule today?", introduces all ages to molecular weight concepts and mass spectrometry in a research laboratory, while connecting the concepts to real-world applications. Through real-time breath analysis, participants explore the concepts of molecular weight, electrostatic field manipulation of charged molecules, and analyte identification by mass analysis. This module is rapid and highly adaptable for outreach activities but also includes age- or classroom-appropriate variations to decrease or increase difficulty levels. The presented interactive demonstration has repeatedly been implemented, with over 2300 participants during six annual "Take Our Daughters & Sons to Work Day" and two corporate "Family Day" outreach activities, successfully engaging, exciting, and educating both kids and parents.

More Details

Continuous Additive Manufacturing using Olefin Metathesis

Advanced Science

Leguizamon, Samuel C.; Foster, Jeffrey C.; Cook, Adam W.; Monk, Nicolas M.; Appelhans, Leah A.; Redline, Erica M.; Jones, Brad H.

The development of chemistry is reported to implement selective dual-wavelength olefin metathesis polymerization for continuous additive manufacturing (AM). A resin formulation based on dicyclopentadiene is produced using a latent olefin metathesis catalyst, various photosensitizers (PSs) and photobase generators (PBGs) to achieve efficient initiation at one wavelength (e.g., blue light) and fast catalyst decomposition and polymerization deactivation at a second (e.g., UV-light). This process enables 2D stereolithographic (SLA) printing, either using photomasks or patterned, collimated light. Importantly, the same process is readily adapted for 3D continuous AM, with printing rates of 36 mm h–1 for patterned light and up to 180 mm h–1 using un-patterned, high intensity light.

More Details

Fabrication, thermal analysis, and heavy ion irradiation resistance of epoxy matrix nanocomposites loaded with silane-functionalized ceria nanoparticles

Physical Chemistry Chemical Physics

Davis-Wheeler, Clare D.; Ringgold, Marissa R.; Redline, Erica M.; Bregman, Avi G.; Hattar, Khalid; Peretti, Amanda S.; Treadwell, LaRico J.

This paper describes a detailed understanding of how nanofillers function as radiation barriers within the polymer matrix, and how their effectiveness is impacted by factors such as composition, size, loading, surface chemistry, and dispersion. We designed a comprehensive investigation of heavy ion irradiation resistance in epoxy matrix composites loaded with surface-modified ceria nanofillers, utilizing tandem computational and experimental methods to elucidate radiolytic damage processes and relate them to chemical and structural changes observed through thermal analysis, vibrational spectroscopy, and electron microscopy. A detailed mechanistic examination supported by FTIR spectroscopy data identified the bisphenol A moiety as a primary target for degradation reactions. Results of computational modeling by the Stopping Range of Ions in Matter (SRIM) Monte Carlo simulation were in good agreement with damage analysis from surface and cross-sectional SEM imaging. All metrics indicated that ceria nanofillers reduce the damage area in polymer nanocomposites, and that nanofiller loading and homogeneity of dispersion are key to effective damage prevention. The results of this study represent a significant pathway for engineered irradiation tolerance in a diverse array of polymer nanocomposite materials. Numerous areas of materials science can benefit from utilizing this facile and effective method to extend the reliability of polymer materials.

More Details

Investigating Volumetric Inclusions of Semiconductor Materials to Improve Flashover Resistance in Dielectrics

Steiner, Adam M.; Siefert, Christopher S.; Shipley, Gabriel A.; Redline, Erica M.; Dickens, Sara D.; Jaramillo, Rex J.; Chavez, Tom C.; Hutsel, Brian T.; Laros, James H.; Peterson, Kyle J.; Bell, Kate S.; Balogun, Shuaib; Losego, Mark; Sammeth, Torin; Kern, Ian; Harjes, Cameron; Gilmore, Mark A.; Lehr, Jane

Abstract not provided.

Sustainable Functional Epoxies through Boric Acid Templating

Parada, Corey M.; Redline, Erica M.; Juba, Benjamin W.; Benally, Brynal B.; Sawyer, P.S.; Mowry, Curtis D.; Corbin, William C.

Thermoset polymers (e.g. epoxies, vulcanizable rubbers, polyurethanes, etc.) are crosslinked materials with excellent thermal, chemical, and mechanical stability; these properties make thermoset materials attractive for use in harsh applications and environments. Unfortunately, material robustness means that these materials persist in the environment with very slow degradation over long periods of time. Balancing the benefits of material performance with sustainability is a challenge in need of novel solutions. Here, we aimed to address this challenge by incorporating boronic acid-amine complexes into epoxy thermoset chemistries, facilitating degradation of the material under pH neutral to alkaline conditions; in this scenario, water acts as an initiator to remove boron species, creating a porous structure with an enhanced surface area that makes the material more amenable to environmental degradation. Furthermore, the expulsion of the boron leaves the residual pores rich in amines which can be exploited for CO2 absorption or other functionalization. We demonstrated the formation of novel boron species from neat mixing of amine compounds with boric acid, including one complex that appears highly stable under nitrogen atmosphere up to 600 °C. While degradation of the materials under static, alkaline conditions (our “trigger”) was inconclusive at the time of this writing, dynamic conditions appeared more promising. Additionally, we showed that increasing boronic acid content created materials more resistant to thermal degradation, thus improving performance under typical high temperature use conditions.

More Details

Tuning Epoxy Thermomechanics via Thermal Isomerization: A Route to Negative Coefficient of Thermal Expansion Materials

ACS Macro Letters

Foster, Jeffrey C.; Staiger, Chad S.; Dugger, Jason W.; Redline, Erica M.

Fine control over the thermal expansion and contraction behavior of polymer materials is challenging. Most polymers have large coefficients of thermal expansion (CTEs), which preclude long performance lifetimes of composite materials. Herein, we report the design and synthesis of epoxy thermosets with low CTE values below their Tg and large contraction behavior above Tg by incorporating thermally contractile dibenzocyclooctane (DBCO) motifs within the thermoset network. This atypical thermomechanical behavior was rationalized in terms of a twist-boat to chair conformational equilibrium of the DBCO linkages. We anticipate these findings to be generally useful in the preparation of materials with designed CTE values.

More Details

Increasing the Lifetime of Epoxy Components with Antioxidant Stabilizers

Narcross, Hannah N.; Redline, Erica M.; Celina, Mathias C.; Bowman, Ashley M.

Epoxy thermoset resins are ubiquitous materials with extensive applications where they are used as encapsulants, composites, and adhesives/staking compounds used to secure sensitive components. Epoxy resins are inherently sensitive to thermo-oxidative aging, especially at elevated temperatures, which changes the bulk properties of the material and can lead to component failure for example by cracking due to embrittlement or by adhesion failure between the epoxy and filler material in a composite. This project investigated the effects of three commercial antioxidants (Irganox® 1010 (I-102), butylated hydroxytoluene (BHT), or Chisorb® 770 (HALS)) at two different loadings (2.5 and 5 wt%) on the mechanical and chemical aging of a model epoxy system (EPONTM 828 / Jeffamine® T-403) under ambient conditions, 65, 95, and 110 °C. Additionally, synthetic routes towards an antioxidant capable of being covalently bound to the resin so as to prevent leaching were explored with one such molecule being successfully synthesized and purified. One commercial antioxidant (Irganox® 1010) was found to reduce the degree of thermo-oxidatively induced damage in the system.

More Details

LDRD Ending Project Review: Polymer-Spray Coating Interfaces (Project 215984) [Slides]

Vackel, Andrew V.; Treadwell, LaRico J.; Redline, Erica M.; Siska, Samantha S.

The ability to surface engineer structures or components using coatings made by the thermal spray processes is very common practice and offers great design flexibility with traditional structure metallic substrates (e.g., Al, Steel, Ti). However, the joining of high melting temperature materials to a polymeric substrate presents a problem due to the melt deposition coating formation mechanism locally subjecting the polymer substrate to temperatures exceeding the limits of the polymer. Thus, it was desired to modify the surface of a polymer so that a thin metallic film could be robustly bonded to the polymer and act as a heat sink for impinging molten droplets from a thermal spray process and allow a thick film coating to be built upon the polymer.

More Details

Evaluation of High Temperature Plastics as a Ceramic Replacement

Redline, Erica M.; Dial, Brent E.; Stavig, Mark E.; Sawyer, P.S.; Miller, Lance L.

This report describes the 2015-2017 fiscal year research efforts to evaluate high temperature plastics as replacement materials for ceramics in electrical contact assemblies. The main objective of this work was to assess the feasibility of replacing existing high-price ceramic inserts with a polymeric material. Current ceramic parts are expensive due to machining costs and can suffer brittle failure. Therefore, replacing the ceramic with a more cost-effective material — in this case a plastic — is highly desirable. Not only are plastics easier to process, but they can also eliminate final tooling and are less brittle than ceramics. This effort used a three-phase approach: selection of appropriate materials determined by a comprehensive literature review, performance of an initial thermal stability screening, understanding of aging behavior under normal and off-normal conditions, and evaluation of performance at elevated temperatures. Two polymers were determined to meet the desired criteria: polybenzimidazole, and Vespel® SP-1 polyimide. Polymer derived ceramics may also be useful but will require further development of molding capabilities that were beyond the scope of this program.

More Details

Anomalous aging of EPDM and FEPM under combined thermo-oxidative and hydrolytic conditions

Polymer Degradation and Stability

Redline, Erica M.; Celina, Mathias C.; Harris, Charles E.; Giron, Nicholas H.; Sugama, Toshifumi; Pyatina, Tatiana

Previous observation of EPDM and FEPM materials aged in thermo-oxidative and thermo-oxidative plus hydrolytic environments revealed an unusual trend: the degradation and disintegration of these polymers in the former case but the ability to maintain mechanical performance and shape in the latter [1]. No abnormalities were observed in the chemical (oxidation rates, FTIR spectra, solvent uptake, gel content, and weight loss vs. temperature) or physical (modulus profile) measurements that could explain these empirically observed aging differences. A second controlled aging test was conducted to verify this trend using only EPDM. Once again it was shown that thermo-oxidative conditions appear to cause more degradative damage (enhanced embrittlement) than observed for the combined thermo-oxidative plus hydrolytic environments. From these data we conclude that water may favorably interfere with normal thermo-oxidative degradation processes. This interference may occur via some combination of chemical and physical property changes in the presence of steam such as: oxidation rate and O2 permeability changes, additional sensitivity to hydrolytic damage, and/or mechanistic changes in relation to pH and hydroperoxide formation.

More Details

Improved Mechanical Performance Fracture Properties and Reliability of Radical-Cured Thermosets

Redline, Erica M.; Bolintineanu, Dan S.; Lane, James M.; Stevens, Mark J.; Alam, Todd M.; Celina, Mathias C.

The aim of this study was to alter polymerization chemistry to improve network homogeneity in free-radical crosslinked systems. It was hypothesized that a reduction in heterogeneity of the network would lead to improved mechanical performance. Experiments and simulations were carried out to investigate the connection between polymerization chemistry, network structure and mechanical properties. Experiments were conducted on two different monomer systems - the first is a single monomer system, urethane dimethacrylate (UDMA), and the second is a two-monomer system consisting of bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) in a ratio of 70/30 BisGMA/TEGDMA by weight. The methacrylate systems were crosslinked using traditional radical polymeriza- tion (TRP) with azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as an initiator; TRP systems were used as the control. The monomers were also cross-linked using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a type of controlled radical polymerization (CRP). FTIR and DSC were used to monitor reac- tion kinetics of the systems. The networks were analyzed using NMR, DSC, X-ray diffraction (XRD), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). These techniques were employed in an attempt to quantify differences between the traditional and controlled radical polymerizations. While a quantitative methodology for characterizing net- work morphology was not established, SAXS and AFM have shown some promising initial results. Additionally, differences in mechanical behavior were observed between traditional and controlled radical polymerized thermosets in the BisGMA/TEGDMA system but not in the UDMA materials; this finding may be the result of network ductility variations between the two materials. Coarse-grained molecular dynamics simulations employing a novel model of the CRP reaction were carried out for the UDMA system, with parameters calibrated based on fully atomistic simulations of the UDMA monomer in the liquid state. Detailed metrics based on network graph theoretical approaches were implemented to quantify the bond network topology resulting from simulations. For a broad range of polymerization parameters, no discernible differences were seen between TRP and CRP UDMA simulations at equal conversions, although clear differences exist as a function of conversion. Both findings are consistent with experiments. Despite a number of shortcomings, these models have demonstrated the potential of molecular simulations for studying network topology in these systems.

More Details

Evaluation of High Temperature Elastomers for Geothermal Wells

Redline, Erica M.; Sugama, Toshifumi; Pyatina, Tatiana

This report describes the extension of a performance screening study of elastomers for geothermal well applications. Elastomeric O-rings were subjected to compression while submerged in water at elevated temperatures and pressure to determine performance under more aggressive conditions. Following the experiment, the elastic moduli of the O-ring cross-sections were assessed for any changes which may affect O-ring function down-hole. All materials showed susceptibility to thermo-oxidative degradation at high temperatures and pressures. Type I FKM had the least amount of compression set of all materials tested at 150ºC while Kalrez FFKM O-rings had the least amount of edge hardening of all materials, regardless of aging temperature. Prior visual observation of materials aged in simulated environments revealed an unusual trend with EPDM and FEPM materials: the degradation and disintegration of these polymers in an oxidative thermal cycle environment, but the ability to maintain mechanical performance and shape during oxidative thermal cycling in the presence of steam. EPDM and FEPM were subjected to additional testing at SNL in order to better understand this aging anomaly. No abnormalities were observed in the chemical (oxidation rates, FTIR spectra, solvent uptake, gel content, and weight loss vs. temperature) or physical (modulus profiles) measurements that could explain the visually observed aging differences. SNL validated this observation through a secondary controlled aging test using only EPDM, where, once again, it was shown that thermo-oxidative conditions appear to cause more degradative damage (enhanced embrittlement) than did thermo-oxidative coupled with hydrolytic environments. From these data we conclude that water may favorably interfere with normal thermo-oxidative degradation processes via some type of inhibition pathway which has yet to be identified.

More Details

Degradation of different elastomeric polymers in simulated geothermal environments at 300°C

Polymer Degradation and Stability

Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica M.; McElhanon, James R.; Blankenship, Douglas A.

This study evaluates the degradation of six different elastomeric polymers used for O-rings: EPDM, FEPM, type I- and II-FKM, FFKM, and FSR, in five different simulated geothermal environments at 300°C: 1) non-aerated steam/cooling cycles, 2) aerated steam/cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat-cool water quenching cycles. The factors assessed included the extent of oxidation, changes in thermal behavior, micro-defects, permeation of ionic species from the test environments into the O-rings, silicate-related scale-deposition, and changes in the O-rings' elastic modulus. The reliability of the O-rings to maintain their integrity depended on the elastomeric polymer composition and the exposure environment. FSR disintegrated while EPDM was oxidized only to some degree in all the environments, FKM withstood heat-water quenching but underwent chemical degradation, FEPM survived in all the environments with the exception of heat-water quenching where it underwent severe oxidation-induced degradation, and FFKM displayed outstanding compatibility with all the tested environments. This paper discusses the degradation mechanisms of the polymers under the aforementioned conditions.

More Details

Evaluation of the Performance of O-rings Made with Different Elastomeric Polymers in Simulated Geothermal Environments at 300°C

Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica M.; McElhanon, James R.; Blankenship, Douglas A.

This paper aims to evaluate the survival of O-rings made with six different elastomeric polymers, EPDM, type I- and II-FKM, FEPM, FFKM, and FSR, in five different simulated geothermal environments at 300°C. It further defines the relative strengths and weaknesses of the materials in each environment. The environments tested were: 1) non-aerated steam-cooling cycles, 2) aerated steam-cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat-cool water quenching cycles. Following exposure, the extent of oxidation, oxidationinduced degradation, thermal behaviors, micro-defects, permeation depths of ionic species present in environments throughout the O-ring, silicate-related scale-deposition, and changes in mechanical properties were assessed.

More Details
Results 1–25 of 30
Results 1–25 of 30