First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report describes research and development (R&D) activities conducted during fiscal year 2020 (FY20) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc. The FY20 EBS activities involved not only modeling and analysis work, but experimental work as well. Despite delays to some planned activities due to COVID-19 precautions, progress was made during FY20 in multiple research areas and documented in this report as follows: (1) EBS Task Force: Task 9/FEBEX Modeling Final Report: Thermo-Hydrological Modeling with PFLOTRAN, (2) preliminary sensitivity analysis for the FEBEX in-situ heater test, (3) cement-carbonate rock interaction under saturated conditions: from laboratory to modeling, (4) hydrothermal experiments, (5) progress on investigating the high temperature behavior of the uranyl-carbonate complexes, (6) in-situ and electrochemical work for model validation, (7) investigation of the impact of high temperature on EBS bentonite with THMC modeling, (8) sorption and diffusion experiments on bentonite, (9) chemical controls on montmorillonite structure and swelling pressure, (10) microscopic origins of coupled transport processes in bentonite, (11) understanding the THMC evolution of bentonite in FEBEX-DP—coupled THMC modeling, (12) modeling in support of HotBENT, an experiment studying the effects of high temperatures on clay buffers/near-field, and (13) high temperature heating and hydration column test on bentonite.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes the 2020 fiscal year (FY20) status of the borehole heater test in salt funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign. This report satisfies SFWST level-two milestone number M2SF-20SNO10303032. This report is an update of an August 2019 level-three milestone report to present the final as-built description of the test and the first phase of operational data (BATS la, January to March 2020) from the Brine Availability Test in Salt (BATS) field test.
This report is a summary of the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies milestone level-three milestone M3SF-205N010303062. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).
This report outlines Sandia National Laboratories modeling studies applied to Stage 1 and Stage 2 of the Full-scale Engineered Barriers Experiment in Crystalline Host Rock (FEBEX) in situ test for the SKB EBS Task Force Task 9. The FEBEX test was a full-scale test conducted over ~18 years at the Grimsel, Switzerland Underground Research Laboratory (URL) managed by NAGRA. It involved emplacing simulated waste packages, in the form of welded cylindrical heaters, inside a tunnel in crystalline granitic rock and surrounded by a bentonite barrier and cement plug. Sensors emplaced within the bentonite monitored the wetting-up, heating, and drying out of the bentonite barrier, and the large resulting data set provides an excellent opportunity for validation of multiphysics Thermal-Hydrological (TH), Thermal-Hydrologic-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) modeling approaches for underground nuclear waste storage and the performance of engineered bentonite barriers. The present status of the EBS Task Force is finalizing Task 9, which follows years of modeling studies of the FEBEX test, by many notable modeling teams (Gens et al., 2009; Sanchez et al. 2010; 2012; Samper et al., 2018). These modeling studies generally use two-dimensional axisymmetric meshes, ignoring threedimensional effects, gravity and asymmetric wetting and dry out of the bentonite engineered barrier. This study investigates these effects with use of the PFLOTRAN THC code with massively parallel computational methods in modeling FEBEX Stage 1 and Stage 2 results. The PFLOTRAN numerical code is an open source, state-of-the-art, massively parallel subsurface flow and reactive transport code operating in a high-performance computing environment (Hammond et al., 2014). Section 2 describes the applied partial differential equations describing mass, momentum and energy balance used in this study, considerations derived by assuming phase equilibrium between gas and liquid phases, constitutive equations for granite, cement plug, and bentonite domains, and specific approaches for use inthe PFLOTRAN code. Section 3 describes the geometry, meshing, and model set-up. Section 4 describes modeling results, Section 5 compares modeling results to field testing data, and Section 6 gives conclusions. The Appendix provides detailed information required by the EBSTask Force for final reporting.
Abstract not provided.
Abstract not provided.
This report describes research and development (R&D) activities conducted during fiscal year 2019 (FY19) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Eneregy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Genreric Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.The FY19 EBS activities involved not only modeling and analysis work, but experimental work as well. The report documents the FY19 progress made in seven different research areas as follows: (1) thermal analysis for the disposal of dual purpose canisters (DPCs) in sedimentary host rock using the semianalytical method, (2) tetravalent uranium solubility and speciation, (3) modeling of high temperature, thermal-hydrologic-mechanical-chemical (THMC) coupled processes, (4) integration of coupled thermalhydrologic- chemical (THC) model with GDSA using a Reduced-Order Model, (5) studying chemical controls on montmorillonite structure and swelling pressure, (6) transmission x-ray microscope for in-situ nanotomography of bentonite and shale, and (7) in-situ electrochemical testing of uranium dioxide under anoxic conditions. The R&D team consisted of subject matter experts from Sandia National Laboratories, Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL), the Bureau de Recherches Géologiques et Minières (BRGM), the University of California Berkeley, and Mississippi State University. In addition, the EBS R&D work leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal. For example, the FY19 work on modeling coupled THMC processes at high temperatures relied on the bentonite properties from the Full-scale Engineered Barrier EXperiment (FEBEX) Field Test conducted at the Grimsel Test Site in Switzerland. Overall, significant progress has been made in FY19 towards developing the modeling tools and experimental capabilities needed to investigate the performance of EBS materials and the associated interactions in the drift and the surrounding near-field environment under a variety of conditions including high temperature regimes.
54th U.S. Rock Mechanics/Geomechanics Symposium
The interface between the steel casing and cemented annulus of a typical wellbore may de-bond and become permeable; this flow path is commonly referred to as a microannulus. Because there are often multiple fluids associated with wellbores, understanding two-phase flow behavior in the microannulus is important when evaluating the risks and hazards associated with leaky wellbores. A microannulus was created in a mock wellbore specimen by thermal debonding, which is one of the possible mechanisms for microannulus creation in the field. The specimen was saturated with silicone oil, and the intrinsic permeability through the microannulus was measured. Nitrogen was then injected at progressively increasing pressures, first to find the breakthrough pressure, and secondly, to obtain the relation between capillary pressure and gas relative permeability. The nitrogen was injected through the bottom of the specimen, to simulate the field condition where the gas migrates upwards along the casing. The measured data was successfully fit to common functional forms, such as the models of Brooks-Corey and Van Genuchten, which relate capillary pressure, saturation, and relative permeability of the two phases. The results can be used in computational models of flow along a wellbore microannulus.
Abstract not provided.
The Waste Isolation Pilot Plant (WIPP) is a geologic repository for defense-related nuclear waste. If left undisturbed, the virtually impermeable rock salt surrounding the repository will isolate the nuclear waste from the biosphere. If humans accidentally intrude into the repository in the future, then the likelihood of a radionuclide release to the biosphere will depend significantly on the porosity and permeability of the repository itself. Room ceilings and walls at the WIPP tend to collapse over time, causing rubble piles to form on floors of empty rooms. The surrounding rock formation will gradually compact these rubble piles until they eventually become solid salt, but the length of time for a rubble pile to reach a certain porosity and permeability is unknown. This report details the first efforts to build models to predict the porosity and permeability evolution of an empty room as it closes. Conventional geomechanical numerical methods would struggle to model empty room collapse and rubble pile consolidation, so three different meshless methods, the Immersed Isogeometric Analysis Meshfree, Reproducing Kernel Particle Method (RKPM), and the Conformal Reproducing Kernel method, were assessed. First, the meshless methods and the finite element method each simulated gradual room closure, without ceiling or wall collapse. All three methods produced equivalent room closure predictions with comparable computational speed. Second, the Immersed Isogeometric Analysis Meshfree method and RKPM simulated two-dimensional empty room collapse and rubble pile consolidation. Both methods successfully simulated large viscoplastic deformations, fracture, and rubble pile rearrangement to produce qualitatively realistic results. In addition to geomechanical simulations, the flow channels in damaged salt and crushed salt were measured using micro-computed tomography, and input into a computational fluid dynamics simulation to predict the salt's permeability. Although room for improvement exists, the current simulation approaches appear promising.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.