Publications

Results 26–41 of 41

Search results

Jump to search filters

Electrostatic discharge/electrical overstress susceptibility in MEMS: A new failure mode

Proceedings of SPIE - The International Society for Optical Engineering

Walraven, J.A.; Soden, Jerry M.; Tanner, Danelle M.; Tangyunyong, Paiboon T.; Cole, Edward I.; Anderson, Richard E.; Irwin, Lloyd W.

Electrostatic discharge (ESD) and electrical overstress (EOS) damage of Micro-Electro-Mechanical Systems (MEMS) has been identified as a new failure mode. This failure mode has not been previously recognized or addressed primarily due to the mechanical nature and functionality of these systems, as well as the physical failure signature that resembles stiction. Because many MEMS devices function by electrostatic actuation, the possibility of these devices not only being susceptible to ESD or EOS damage but also having a high probability of suffering catastrophic failure due to ESD or EOS is very real. Results from previous experiments have shown stationary comb fingers adhered to the ground plane on MEMS devices tested in shock, vibration, and benign environments. Using Sandia polysilicon microengines, we have conducted tests to establish and explain the ESD/EOS failure mechanism of MEMS devices. These devices were electronically and optically inspected prior to and after ESD and EOS testing. This paper will address the issues surrounding MEMS susceptibility to ESD and EOS damage as well as describe the experimental method and results found from ESD and EOS testing. The tests were conducted using conventional IC failure analysis and reliability assessment characterization tools. In this paper we will also present a thermal model to accurately depict the heat exchange between an electrostatic comb finger and the ground plane during an ESD event.

More Details

Application of TIVA in Design Debug

Conference Proceedings from the International Symposium for Testing and Failure Analysis

Cole, Edward I.

Thermally-Induced Voltage Alteration (TIVA) is a relatively new technique for locating electrical defects in integrated circuits [1,2]. This paper describes a novel application of TIVA, to locate design anomalies. A newly designed integrated circuit with high and inconsistent Quiescent Power Supply Current (IDDQ) was initially diagnosed with limited success using various failsite isolation techniques. The TIVA technique was successful in accurately locating design anomalies. Results from TIVA identified a spurious ring oscillator in the design. Design modifications carried out using a focussed ion beam (FIB), verified the accuracy of the results from TIVA. This study clearly extends the use of TIVA beyond that of locating electrical defects and anomalies into the realm of design debugging.

More Details

LDRD final report backside localization of open and shorted IC interconnections LDRD Project (FY98 and FY 99)

Cole, Edward I.; Tangyunyong, Paiboon T.; Barton, Daniel L.

Two new failure analysis techniques have been developed for backside and front side localization of open and shorted interconnections on ICs. These scanning optical microscopy techniques take advantage of the interactions between IC defects and localized heating using a focused infrared laser ({lambda} = 1,340 nm). Images are produced by monitoring the voltage changes across a constant current supply used to power the IC as the laser beam is scanned across the sample. The methods utilize the Seebeck Effect to localize open interconnections and Thermally-Induced Voltage Alteration (TIVA) to detect shorts. Initial investigations demonstrated the feasibility of TIVA and Seebeck Effect Imaging (SEI). Subsequent improvements have greatly increased the sensitivity of the TIVA/SEI system, reducing the acquisition times by more than 20X and localizing previously unobserved defects. The interaction physics describing the signal generation process and several examples demonstrating the localization of opens and shorts are described. Operational guidelines and limitations are also discussed. The system improvements, non-linear response of IC defects to heating, modeling of laser heating and examples using the improved system for failure analysis are presented.

More Details

Thermal Modeling of TIVA Profiles of a Polysilcon-Metal Test Structure

Journal of Applied Physics

Tangyunyong, Paiboon T.; Benson, D.A.; Cole, Edward I.

Thermal modeling and simulations were used to analyze the thermal profiles of a polysilicon-metal test structure generated by thermally-induced voltage alteration (TIVA), a new laser-based failure analysis technique to localize shorted interconnects. The results show that variations in TIVA thermal profiles are due mainly to preferential laser absorption in various locations in the test structure. Differences in oxide thickness also affect the local heat conduction and temperature distribution. Modeling results also show that local variation in heat conduction is less important than the absorbed laser power in determining the local temperatures since our test structure has feature sizes that are small compared to the length over which heat spreads.

More Details
Results 26–41 of 41
Results 26–41 of 41