Publications

Results 1–25 of 41

Search results

Jump to search filters

Defect localization, characterization and reliability assessment in emerging photovoltaic devices

Cruz-Campa, Jose L.; Haase, Gad S.; Cole, Edward I.; Tangyunyong, Paiboon T.; Okandan, Murat O.; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

More Details

Failure analysis techniques for microsystems-enabled photovoltaics

IEEE Journal of Photovoltaics

Cruz-Campa, Jose L.; Haase, Gad S.; Cole, Edward I.; Tangyunyong, Paiboon T.; Resnick, Paul J.; Okandan, Murat O.; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPV) has great potential to meet the increasing demands for light-weight, photovoltaic solutions with high power density and efficiency. This paper describes effective failure analysis techniques to localize and characterize nonfunctional or underperforming MEPV cells. The defect localization methods such as electroluminescence under forward and reverse bias, as well as optical beam induced current using wavelengths above and below the device band gap, are presented. The current results also show that the MEPV has good resilience against degradation caused by reverse bias stresses. © 2013 IEEE.

More Details

Fault localization and failure modes in microsystems-enabled photovoltaic devices

IEEE International Reliability Physics Symposium Proceedings

Cruz-Campa, Jose L.; Haase, Gad S.; Tangyunyong, Paiboon T.; Cole, Edward I.; Pimentel, Alejandro A.; Resnick, Paul J.; Okandan, Murat O.; Nielson, Gregory N.

Microsystems-enabled photovoltaic (MEPV) technology is a promising approach to lower the cost of solar energy to competitive levels. This paper describes current development efforts to leverage existing silicon integrated circuit (IC) failure analysis (FA) techniques to study MEPV devices. Various FA techniques such as light emission microscopy and laser-based fault localization were used to identify and characterize primary failure modes after fabrication and packaging. The FA results provide crucial information used in provide corrective actions and improve existing MEPV fabrication techniques. © 2013 IEEE.

More Details

Comparison of beam-based failure analysis techniques for microsystems-enabled photovoltaics

Conference Proceedings from the International Symposium for Testing and Failure Analysis

Yang, Benjamin B.; Cruz-Campa, Jose L.; Haase, Gad S.; Cole, Edward I.; Tangyunyong, Paiboon T.; Okandan, Murat O.; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPVs) are microfabricated arrays of thin and efficient solar cells. The scaling effects enabled by this technique results in great potential to meet increasing demands for light-weight photovoltaic solutions with high power density. This paper covers failure analysis techniques used to support the development of MEPVs with a focus on the laser beam-based methods of LIVA, TIVA, OBIC, and SEI. Each FA technique is useful in different situations, and the examples in this paper show the relative advantages of each method for the failure analysis of MEPVs. Copyright © 2013 ASM International® All rights reserved.

More Details

Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques

Cole, Edward I.; Tangyunyong, Paiboon T.

We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

More Details

Beam-based defect localization techniques

Cole, Edward I.

SEM and SOM techniques for IC analysis that take advantage of 'active injection' are reviewed. Active injection refers to techniques that alter the electrical characteristics of the device analyzed. All of these techniques can be performed on a standard SEM or SOM (using the proper laser wavelengths).

More Details

Flip-chip and backside techniques

Cole, Edward I.; Barton, Daniel L.

State-of-the-art techniques for failure localization and design modification through bulk silicon are essential for multi-level metallization and new, flip chip packaging methods. The tutorial reviews the transmission of light through silicon, sample preparation, and backside defect localization techniques that are both currently available and under development. The techniques covered include emission microscopy, scanning laser microscope based techniques (electrooptic techniques, LIVA and its derivatives), and other non-IR based tools (FIB, e-beam techniques, etc.).

More Details

What's been happening with the IVAs?

Electronic Device Failure Analysis

Cole, Edward I.

The working of induced voltage alteration (IVA) techniques and its major developments in areas of hardware for analysis, electrical biasing, detection advances, resolution improvements, and future possibilities, is discussed. IVA technique uses either a scanning electron microscope's (SEM) electron beam or a scanning optical microscope's (SOM) laser beam as the external stimulus. The other IVA techniques were developed using different localized stimuli, with the same sensitive biasing approach. The IVA techniques takes advantage of the strong signal response of CMOS devices when operated as current-to-voltage converters. To improve the biasing approach, externally induced voltage alterations (XIVA) was introduced, in which an ac choke circuit acts as a constant-voltage source. Synchronization with device operation also allows specific vectors to be analyzed using local photocurrent and thermal stimulus.

More Details
Results 1–25 of 41
Results 1–25 of 41