Publications

Results 51–59 of 59

Search results

Jump to search filters

Many-body effects on the electronic and optical properties of strained semiconducting carbon nanotubes

Physical Review B - Condensed Matter and Materials Physics

Spataru, Dan C.; Leonard, Francois L.

We present many-body ab initio calculations of the electronic and optical properties of semiconducting zigzag carbon nanotubes under uniaxial strain. The GW approach is utilized to obtain the quasiparticle band gaps and is combined with the Bethe-Salpeter equation to obtain the optical absorption spectrum. We find that the dependence of the electronic band gaps on strain is more complex than previously predicted based on tight-binding models or density functional theory. In addition, we show that the exciton energy and exciton binding energy depend significantly on strain, with variations of tens of milli-electron-volts per percent strain, but despite these strong changes the absorbance is found to be nearly independent of strain. Our results provide new guidance for the understanding and design of optomechanical systems based on carbon nanotubes. © 2013 American Physical Society.

More Details

GW approach to Anderson model in and out of equilibrium : scaling properties in the Kondo regime

Spataru, Dan C.

The low-energy properties of the Anderson model for a single impurity coupled to two leads are studied using the GW approximation. We find that quantities such as the spectral function at zero temperature, the linear-response conductance as function of temperature or the differential conductance as function of bias voltage exhibit universal scaling behavior in the Kondo regime. We show how the form of the GW scaling functions relates to the form of the scaling functions obtained from the exact solution at equilibrium. We also compare the energy scale that goes inside the GW scaling functions with the exact Kondo temperature, for a broad range of the Coulomb interaction strength in the asymptotic regime. This analysis allows to clarify a presently suspended question in the literature, namely whether or not the GW solution captures the Kondo resonance.

More Details

Extreme solid state refrigeration using nanostructured Bi-Te alloys

Sharma, Peter A.; Morales, Alfredo M.; Spataru, Dan C.

Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

More Details
Results 51–59 of 59
Results 51–59 of 59