Emerging applications for pillar compression
Abstract not provided.
Abstract not provided.
Scripta Materialia
Abstract not provided.
Metallic materials in sliding contact typically undergo dislocation-mediated plasticity, which results in stick-slip frictional behavior associated with high coefficients of friction ({mu} > 0.8). Our recent work on two electroplated nanocrystalline Ni alloys reveal that under combined conditions of low stress and low sliding velocity, these metals have very low friction ({mu} < 0.3). The observed frictional behavior is consistent with the transition from dislocation-mediated plasticity to an alternative mechanism such as grain boundary sliding. Focused ion beam cross-sections viewed in the TEM reveal the formation of a subsurface tribological bilayer at the contact surface, where the parent nanocrystalline material has evolved in structure to accommodate the frictional contact. Grain growth at a critical distance below the contact surface appears to promote a shear-accomodation layer. We will discuss these results in the context of a grain-size dependent transition from conventional microcrystalline wear behavior to this unusual wear behavior in nanocrystalline FCC metals.
Recently, molecular dynamics simulations (e.g. Groger et al. Acta Mat. vol.56) have uncovered new insights into dislocation motion associated with plastic deformation of BCC metals. Those results indicate that stress necessary for glide along 110[111] crystallographic systems plus additional shear stresses along non-glide directions may accurately characterize plastic flow in BCC crystals. Further, they are readily adaptable to micromechanical formulations used in crystal plasticity models. This presentation will discuss an adaptation into a classical mechanics framework for use in a large scale rate-dependent crystal plasticity model. The effects of incorporating the non-glide influences on an otherwise associative flow model are profound. Comparisons will be presented that show the effect of the non-glide stress components on tension-compression yield stress asymmetry and the evolution of texture in BCC crystals.
In ductile metals, sliding contact is often accompanied by severe plastic deformation localized to a small volume of material adjacent to the wear surface. During the initial run-in period, hardness, grain structure and crystallographic texture of the surfaces that come into sliding contact undergo significant changes, culminating in the evolution of subsurface layers with their own characteristic features. Here, a brief overview of our ongoing research on the fundamental phenomena governing the friction-induced recrystallization in single crystal metals, and how these recrystallized structures with nanometer-size grains would in turn influence metallic friction will be presented. We have employed a novel combination of experimental tools (FIB, EBSD and TEM) and an analysis of the critical resolved shear stress (RSS) on the twelve slip systems of the FCC lattice to understand the evolution of these friction-induced structures in single crystal nickel. The later part of the talk deals with the mechanisms of friction in nanocrystalline Ni films. Analyses of friction-induced subsurfaces seem to confirm that the formation of stable ultrafine nanocrystalline layers with 2-10 nm grains changes the deformation mechanism from the traditional dislocation mediated one to that is predominantly controlled by grain boundaries, resulting in significant reductions in the coefficient friction.
The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.
Most engineering materials are inherently inhomogeneous in their processing, internal structure, properties, and performance. Their properties are therefore statistical rather than deterministic. These inhomogeneities manifest across multiple length and time scales, leading to variabilities, i.e. statistical distributions, that are necessary to accurately describe each stage in the process-structure-properties hierarchy, and are ultimately the primary source of uncertainty in performance of the material and component. When localized events are responsible for component failure, or when component dimensions are on the order of microstructural features, this uncertainty is particularly important. For ultra-high reliability applications, the uncertainty is compounded by a lack of data describing the extremely rare events. Hands-on testing alone cannot supply sufficient data for this purpose. To date, there is no robust or coherent method to quantify this uncertainty so that it can be used in a predictive manner at the component length scale. The research presented in this report begins to address this lack of capability through a systematic study of the effects of microstructure on the strain concentration at a hole. To achieve the strain concentration, small circular holes (approximately 100 {micro}m in diameter) were machined into brass tensile specimens using a femto-second laser. The brass was annealed at 450 C, 600 C, and 800 C to produce three hole-to-grain size ratios of approximately 7, 1, and 1/7. Electron backscatter diffraction experiments were used to guide the construction of digital microstructures for finite element simulations of uniaxial tension. Digital image correlation experiments were used to qualitatively validate the numerical simulations. The simulations were performed iteratively to generate statistics describing the distribution of plastic strain at the hole in varying microstructural environments. In both the experiments and simulations, the deformation behavior was found to depend strongly on the character of the nearby microstructure.
Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models for deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the International Journal of Plasticity.
Abstract not provided.
The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.
Abstract not provided.
Abstract not provided.
International Journal of Plasticity
Many conventional continuum approaches to solid mechanics do not address the size sensitivity of deformation to microstructural features like grain boundaries, and are therefore unable to capture much of the experimentally observed behavior of polycrystal deformation. We propose a non-local crystal plasticity model, in which the geometrically necessary dislocation (GND) density is calculated using a non-local integral approach. The model is based on augmented FeFp kinematics, which account for the initial microstructure (primarily grain boundaries) present in the polycrystal. With the augmented kinematics, the initial GND and the evolving GND state are determined in a consistent manner. The expanded kinematics and the non-local crystal plasticity model are used to simulate the tensile behavior in copper polycrystals with different grain sizes ranging from 14 μm to 244 μm. The simulation results show a grain size dependence on the polycrystal's yield strength, which are in good agreement with the experimental data. © 2007 Elsevier Ltd. All rights reserved.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.