Publications
Search results
Jump to search filtersStatistical Approach for Determining the Sandia Array Performance Model Coefficients that Considers String-Level Mismatch
Commonly used performance models, such as PVsyst, Sandia Array Performance Model (SAPM), and PV LIB, treat the PV array as being constructed of identical modules. Each of the models attempts to account for mismatch losses by applying a simple percent reduction factor to the overall estimated power. The present work attempted to reduce uncertainty of mismatch losses by determining a representative set of performance coefficients for the SAPM that were developed from a characterization of a sample of modules. This approach was compared with current practice, where only a single module’s thermal and electrical properties are testing. However, the results indicate that minimal to no improvements in model predictions were achieved.
Procedure to Determine Coefficients for the Sandia Array Performance Model (SAPM)
The Sandia Array Performance Model (SAPM), a semi-empirical model for predicting PV system power, has been in use for more than a decade. While several studies have presented comparisons of measurements and analysis results among laboratories, detailed procedures for determining model coefficients have not yet been published. Independent test laboratories must develop in-house procedures to determine SAPM coefficients, which contributes to uncertainty in the resulting models. Here we present a standard procedure for calibrating the SAPM using outdoor electrical and meteorological measurements. Analysis procedures are illustrated with data measured outdoors for a 36-cell silicon photovoltaic module.
Simulation of Photovoltaic Power Output for Solar Integration Studies in the Southeast US
We describe the method used to simulate one year of AC power at one-minute intervals for a large collection of hypothetical utility-scale photovoltaic plants of varying size, employing either fixed-tilt PV modules or single-axis tracking, and for distribution-connected photovoltaic (DPV) power systems assumed for a number of metropolitan areas. We also describe the simulation of an accompanying day-ahead forecast of hourly AC power for utility-scale plants and DPV systems such that forecast errors are consistent with errors reported for current forecasting methods. The results of these simulations are intended for use in a study that examines the possible effects of increased levels of photovoltaic (PV) generation bulk on power variability within the Tennessee Valley Authority (TVA) and Southern Company service territories.
Identification of periods of clear sky irradiance in time series of GHI measurements
Renewable Energy
We present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from a clear sky detection algorithm, and with satellite and ground-based sky imagery.
Irradiance Modeling for Bifacial PV
Abstract not provided.
Analysis of Irradiance Models for Bifacial PV Modules
Abstract not provided.
Final Technical Report Advanced Solar Resource Modeling and Analysis
The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.
Final Technical Report: Increasing Prediction Accuracy
PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.
Final Technical Report: Advanced Measurement and Analysis of PV Derate Factors
The Advanced Measurement and Analysis of PV Derate Factors project focuses on improving the accuracy and reducing the uncertainty of PV performance model predictions by addressing a common element of all PV performance models referred to as “derates”. Widespread use of “rules of thumb”, combined with significant uncertainty regarding appropriate values for these factors contribute to uncertainty in projected energy production.
Final Technical Report: Characterizing Emerging Technologies
The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).
Estimating Parameters for the PVsyst Version 6 Photovoltaic Module Performance Model
We present an algorithm to determine parameters for the photovoltaic module perf ormance model encoded in the software package PVsyst(TM) version 6. Our method operates on current - voltage (I - V) measured over a range of irradiance and temperature conditions. We describe the method and illustrate its steps using data for a 36 cell crystalli ne silicon module. We qualitatively compare our method with one other technique for estimating parameters for the PVsyst(TM) version 6 model .
Analysis of Global Horizontal Irradiance in Version 3 of the National Solar Radiation Database
We report an analysis that compares global horizontal irradiance (GHI) estimates from version 3 of the National Solar Radiation Database (NSRDB v3) with surface measurements of GHI at a wide variety of locations over the period spanning from 2005 to 2012. The NSRDB v3 estimate of GHI are derived from the Physical Solar Model (PSM) which employs physics-based models to estimate GHI from measurements of reflected visible and infrared irradiance collected by Geostationary Operational Environment Satellites (GOES) and several other data sources. Because the ground measurements themselves are uncertain our analysis does not establish the absolute accuracy for PSM GHI. However by examining the comparison for trends and for consistency across a large number of sites, we may establish a level of confidence in PSM GHI and identify conditions which indicate opportunities to improve PSM. We focus our evaluation on annual and monthly insolation because these quantities directly relate to prediction of energy production from solar power systems. We find that generally, PSM GHI exhibits a bias towards overestimating insolation, on the order of 5% when all sky conditions are considered, and somewhat less (-3%) when only clear sky conditions are considered. The biases persist across multiple years and are evident at many locations. In our opinion the bias originates with PSM and we view as less credible that the bias stems from calibration drift or soiling of ground instruments. We observe that PSM GHI may significantly underestimate monthly insolation in locations subject to broad snow cover. We found examples of days where PSM GHI apparently misidentified snow cover as clouds, resulting in significant underestimates of GHI during these days and hence leading to substantial understatement of monthly insolation. Analysis of PSM GHI in adjacent pixels shows that the level of agreement between PSM GHI and ground data can vary substantially over distances on the order of 2 km. We conclude that the variance most likely originates from dramatic contrasts in the ground's appearance over these distances.
Photovoltaic System Modeling: Uncertainty and Sensitivity Analyses
We report an uncertainty and sensitivity analysis for modeling AC energy from photovoltaic systems. Output from a PV system is predicted by a sequence of models. We quantify uncertainty in the output of each model using empirical distributions of each model’s residuals. We propagate uncertainty through the sequence of models by sampling these distributions to obtain an empirical distribution of a PV system’s output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance; (3) predict cell temperature; (4) estimate DC voltage, current and power; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power. Our analysis considers a notional PV system comprising an array of FirstSolar FS-387 modules and a 250 kW AC inverter; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. We found that uncertainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.
Dependence on Geographic Location of Air Mass Modifiers For Photovoltaic Module Performance Models
Abstract not provided.
2015 IEEE PVSC Tutorial on PV System Performance
Abstract not provided.
Dependence on Geographic Location of Air Mass Modifiers For Photovoltaic Module Performance Models
Abstract not provided.
Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States
IEEE Journal of Photovoltaics
We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decomposition models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. When only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.
Parameter Estimation for Single Diode Models of Photovoltaic Modules
Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.
Modeling the irradiance and temperature dependence of photovoltaic modules in PVsyst
IEEE Journal of Photovoltaics
In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on a previous study that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. Improvements in energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.
A Performance Model for Photovoltaic Modules with Integrated Microinverters
Photovoltaic (PV) systems using microinverters are becoming increasingly popular in the residential system market, as such systems offer several advantages over PV systems using central inverters. PV modules with integrated microinverters, termed AC modules, are emerging to fill this market space. Existing test procedures and performance models designed for separate DC and AC components are unusable for AC modules because these do not allow ready access to the intermediate DC bus. Sandia National Laboratories' Photovoltaics and Distributed Systems department has developed a set of procedures to test, characterize, and model PV modules with integrated microinverters. The resulting empirical model is able to predict the output AC power of with RMS error of 1-2%. This document describes these procedures and provides the results of model validation efforts.
Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations
Journal of Solar Energy Engineering
Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam onto the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.
Photovoltaic system model calibration using monitored system data
Abstract not provided.
Uncertainty in Module Temperature Coefficients
Abstract not provided.
PV Module Model Calibration Using Monitored Data
Abstract not provided.
Accuracy of Performance Predictions for PV Systems
Abstract not provided.
Introduction to the open source PV LIB for python Photovoltaic system modelling package
2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014
The proper modeling of Photovoltaic(PV) systems is critical for their financing, design, and operation. PV LIB provides a flexible toolbox to perform advanced data analysis and research into the performance modeling and operations of PV assets, and this paper presents the extension of the PV LIB toolbox into the python programming language. PV LIB provides a common repository for the release of published modeling algorithms, and thus can also help to improve the quality and frequency of model validation and inter comparison studies. Overall, the goal of PV LIB is to accelerate the pace of innovation in the PV sector.
Measuring PV system series resistance without full IV curves
2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014
We present a method for measuring the series resistance of the PV module, string, or array that does not require measuring a full IV curve or meteorological data. Our method relies only on measurements of open circuit voltage and maximum power voltage and current, which can be readily obtained using standard PV monitoring equipment; measured short circuit current is not required. We validate the technique by adding fixed resistors to a PV circuit and demonstrating that the method can predict the added resistance. Relative prediction accuracy appears highest for smaller changes in resistance, with a systematic underestimation at larger resistances. Series resistance is shown to vary with irradiance levels with random errors below 1.5% standard deviation.
Correcting bias in measured module temperature coefficients
2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014
Temperature coefficients for PV modules describe the change with temperature of current, voltage and power. Coefficients are commonly determined by linear regression using measured module output at fixed irradiance and varying temperatures. We compare temperature coefficients determined for the same modules from both outdoor and indoor measurements. We find systematic bias in the temperature coefficients for voltage and power, with values derived from indoor measurements consistently smaller in absolute value than values derived from outdoor testing during which the module temperature is measured as specified in IEC 61853-1. Our work suggests that the bias results from a corresponding bias in the estimated module temperature. However we have not identified an alternative arrangement of a few thermocouples that would result in consistent values for temperature coefficients from either indoor or outdoor measurements.
Accuracy of Performance Predictions for PV Systems
Abstract not provided.
Calibration of Photovoltaic Module Performance Models
Abstract not provided.
Calibration of Photovoltaic Module Performance Models
Abstract not provided.
Evaluation of Irradiance Decomposition and Transposition Models at Locations Across the United States
Abstract not provided.
Which Models Matter: Uncertainty and Sensitivity Analysis for Photovoltaic Power Systems
Abstract not provided.
2014 IEEE PVSC Tutorial on PV System Performance Modeling
Abstract not provided.
Measuring PV System Series Resistance Without Full IV Curves
Abstract not provided.
HCPV characterization: Analysis of fielded system data
AIP Conference Proceedings
Sandia and Semprius have partnered to evaluate the operational performance of a 3.5 kW (nominal) R&D system using 40 Semprius modules. Eight months of operational data has been collected and evaluated. Analysis includes determination of Pmp, Imp and Vmp at CSTC conditions, Pmp as a function of DNI, effect of wind speed on module temperature and seasonal variations in performance. As expected, on-sun Pmp and Imp of the installed system were found to be ~10% lower than the values determined from flash testing at CSTC, while Vmp was found to be nearly identical to the results of flash testing. The differences in the flash test and outdoor data are attributed to string mismatch, soiling, seasonal variation in solar spectrum, discrepancy in the cell temperature model, and uncertainty in the power and current reported by the inverter. An apparent limitation to the degree of module cooling that can be expected from wind speed was observed. The system was observed to display seasonal variation in performance, likely due to seasonal variation in spectrum.
Outdoor PV Performance Evaluation of Three Different Models: Single-diode SAPM and Loss Factor Model
Abstract not provided.
OUTDOOR PV PERFORMANCE EVALUATION OF THREE DIFFERENT MODELS: SINGLE-DIODE SAPM AND LOSS FACTOR MODEL
Abstract not provided.
Detection of Clear Sky Periods in GHI Measurements
Solar Energy
Abstract not provided.
Determining Coefficients for the Sandia Array Performance Model
Abstract not provided.
2nd PV Performance Modeling WorkshopSummary and Closing Remarks
Abstract not provided.
Results of Parameter Estimation Exercise
Abstract not provided.
Estimation of Parameters for Single Diode Models from Measured I-V Curves
Abstract not provided.
Assessment of Compliance with Ground Water Protection Standards in the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Nevada
Proposed for publication in Reliability Engineering and System Safety.
Abstract not provided.
Expected Dose and Associated Uncertainty and Sensitivity Analysis Results for All Scenario Classes in the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Nevada
Proposed for publication in Reliability Engineering and System Safety.
Abstract not provided.
Expected Dose and Associated Uncertainty and Sensitivity Analysis Results for the Human Intrusion Scenario in the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Nevada
Proposed for publication in Reliability Engineering and System Safety.
Abstract not provided.
Uncertainty and Sensitivity Analysis for the Seismic Scenario Classes in the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Nevada
Proposed for publication in Reliability Engineering and System Safety.
Abstract not provided.
Expected Dose for the Seismic Scenario Classes in the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Nevada
Proposed for publication in Reliability Engineering and System Safety.
Abstract not provided.
Uncertainty and Sensitivity Analysis for the Igneous Scenario Classes in the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Nevada
Proposed for publication in Reliability Engineering and System Safety.
Abstract not provided.