Developing a kinetic approach to radiation transport and its interaction in He/N2 ionization waves
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physics D: Applied Physics
A kinetic description for electronic excitation of helium for principal quantum number n 4 has been included into a particle-in-cell (PIC) simulation utilizing direct simulation Monte Carlo (DSMC) for electron-neutral interactions. The excited electronic levels radiate state-dependent photons with wavelengths from the extreme ultraviolet (EUV) to visible regimes. Photon wavelengths are chosen according to a Voigt distribution accounting for the natural, pressure, and Doppler broadened linewidths. This method allows for reconstruction of the emission spectrum for a non-thermalized electron energy distribution function (EEDF) and investigation of high energy photon effects on surfaces, specifically photoemission. A parallel plate discharge with a fixed field (i.e. space charge neglected) is used to investigate the effects of including photoemission for a Townsend discharge. When operating at a voltage near the self-sustaining discharge threshold, it is observed that the electron current into the anode is higher when including photoemission from the cathode than without even when accounting for self-absorption from ground state atoms. The photocurrent has been observed to account for as much as 20% of the total current from the cathode under steady-state conditions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The goal of this report is to document the current status of Aleph with regards to electron collisions under an electric field. Aleph and the community-accepted BOLSIG+ code are both used to compute reactions rates for a set of 25 electron-nitrogen interactions. A reasonable comparison is found (see below) providing evidence that Aleph is successfully simulating or implementing: (1) Particle-particle collision cross-sections via DSMC methodology, (2) Energy balance for simple particle interactions, and (3) Electron energy distribution function (EEDF) evolution