Quantifying sources of charge variance in CdZnTe
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Chemical Theory and Computation
Understanding charge transport processes at a molecular level is currently hindered by a lack of appropriate models for incorporating nonperiodic, anisotropic electric fields in molecular dynamics (MD) simulations. In this work, we develop a model for including electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and the algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. Our model represents the electric potential on a FE mesh satisfying a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagate to each atom through modified forces. The method is verified using simulations where analytical solutions are known or comparisons can be made to existing techniques. In addition, a calculation of a salt water solution in a silicon nanochannel is performed to demonstrate the method in a target scientific application in which ions are attracted to charged surfaces in the presence of electric fields and interfering media. © 2011 American Chemical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nano Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review B
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry C
Abstract not provided.
A rational approach was used to design polymeric materials for thin-film electronics applications, whereby theoretical modeling was used to determine synthetic targets. Time-dependent density functional theory calculations were used as a tool to predict the electrical properties of conjugated polymer systems. From these results, polymers with desirable energy levels and band-gaps were designed and synthesized. Measurements of optoelectronic properties were performed on the synthesized polymers and the results were compared to those of the theoretical model. From this work, the efficacy of the model was evaluated and new target polymers were identified.
Journal of the American Chemical Society
Abstract not provided.
Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anisotropic electric fields, as occur at charged fluid/solid interfaces, in molecular dynamics (MD) simulations. In this work, we develop a model for including electric fields in MD using an atomistic-to-continuum framework. Our model represents the electric potential on a finite element mesh satisfying a Poisson equation with source terms determined by the distribution of the atomic charges. The method is verified using simulations where analytical solutions are known or comparisons can be made to existing techniques. A Calculation of a salt water solution in a silicon nanochannel is performed to demonstrate the method in a target scientific application.
With the goal of studying the conversion of optical energy to electrical energy at the nanoscale, we developed and tested devices based on single-walled carbon nanotubes functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrated the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggested that upon photoabsorption, the chromophores isomerize to give a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations were used to study the chromophore-nanotube hybrids, and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments supported the notion of dipole changes as the optical detection mechanism.