Publications

Results 26–37 of 37

Search results

Jump to search filters

High-Level Considerations for Access and Access Controls by Design

Bland, Jesse J.; Evans, Alan S.; Goolsby, Tommy D.; Horowitz, Steven M.; Monthan, Chad W.; Osborn, Douglas M.; Rivers, Joe; Rodgers, Thomas W.; White, Jake; Williams, Adam D.

Nuclear power plants must be, by design and construction, robust structures and difficult to penetrate. Ideally, for security, the reactors would be sited underground, beneath a massive solid block, too thick to be penetrated by tools or explosives with all communications and power transfer lines also underground and fortified. Limiting access with difficult-to-penetrate physical barriers is going to be key for determining response and staffing requirements.

More Details

High-Level Considerations for Access and Access Controls by Design

Bland, Jesse J.; Evans, Alan S.; Goolsby, Tommy D.; Horowitz, Steven M.; Monthan, Chad W.; Osborn, Douglas M.; Rivers, Joe; Rodgers, Thomas W.; White, Jake; Williams, Adam D.

Nuclear power plants must be, by design and construction, robust structures and difficult to penetrate. Limiting access with difficult-to-penetrate physical barriers is going to be key for staffing reduction. Ideally, for security, the reactors would be sited underground, beneath a massive solid block, too thick to be penetrated by tools or explosives with all communications and power transfer lines also underground and fortified. Having the minimal possible number of access points and methods to completely block access from these points if a threat is detected will greatly help us justify staffing reduction.

More Details

U.S. Domestic Small Modular Reactor Security by Design

Evans, Alan S.; Parks, Mancel J.

U.S. nuclear power facilities face increasing challenges in meeting evolving security requirements caused by evolving and expanding threats while keeping cost reasonable to make nuclear energy competitive. The addition of security features after a facility has been designed and without attention to optimization (the past approach) can lead to cost overruns. Incorporating security in the design process can provide robust, cost effective, and sufficient physical protection systems. The purpose of this work is to develop a framework for the integration of security into the design phase of Small Modular Reactors (SMRs) and the use of modeling and simulation tools to optimize the design of physical protection systems. This effort will intend to integrate security into the design phase of a model SMR that meets current NRC physical protection requirements and provide advanced solutions to improve physical protection and decrease costs. A suite of tools, including SCRIBE3D, PATHTRACE and Blender were used to model a hypothetical generic domestic SMR facility. Physical protection elements such as sensors, cameras, portal monitors, barriers, and guard forces were added to the model based on best practices for physical protection systems. One outsider sabotage scenario was examined with 4-8 adversaries to determine security metrics. This work will influence physical protection system designs and facility designs for U.S. domestic SMRs. The purpose of this project is to demonstrate how a series of experimental and modeling capabilities across the Department of Energy Complex can impact the design of U.S. domestic SMRs and the complete Safeguards and Security by Design (SSBD) for SMRs.

More Details
Results 26–37 of 37
Results 26–37 of 37