Publications

Results 26–50 of 171

Search results

Jump to search filters

The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems

Colloids and Surfaces A: Physicochemical and Engineering Aspects

Reichert, Matthew D.; Alvarez, Nicolas J.; Brooks, Carlton F.; Grillet, Anne M.; Mondy, L.A.; Anna, Shelley L.; Walker, Lynn M.

Pendant bubble and drop devices are invaluable tools in understanding surfactant behavior at fluid-fluid interfaces. The simple instrumentation and analysis are used widely to determine adsorption isotherms, transport parameters, and interfacial rheology. However, much of the analysis performed is developed for planar interfaces. The application of a planar analysis to drops and bubbles (curved interfaces) can lead to erroneous and unphysical results. We revisit this analysis for a well-studied surfactant system at air-water interfaces over a wide range of curvatures as applied to both expansion/contraction experiments and interfacial elasticity measurements. The impact of curvature and transport on measured properties is quantified and compared to other scaling relationships in the literature. The results provide tools to design interfacial experiments for accurate determination of isotherm, transport and elastic properties.

More Details

Experiments to populate and validate a processing model for polyurethane foam. BKC 44306 PMDI-10

Mondy, L.A.; Bauer, Stephen J.; Hileman, Michael B.; Thompson, Kyle R.; Smith, David M.; Rao, Rekha R.; Shelden, Bion S.; Soehnel, Melissa M.; O'Hern, Timothy J.; Grillet, Anne M.; Celina, Mathias C.; Wyatt, Nicholas B.; Russick, Edward M.

We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

More Details

Thermophysical properties of BKC 44306 and BKC 44307 PMDI urethane solid and foams

Bauer, Stephen J.; Flint, Gregory M.; Mondy, L.A.

Accurate knowledge of thermophysical properties of urethane foam is considered extremely important for meaningful models and analyses to be developed of scenarios wherein the foam is heated. Its performance at temperature requires a solid understanding of the foam material properties at temperature. Also, foam properties vary with density/porosity. An experimental program to determine the thermal properties of the two foams and their parent solid urethane was developed in order to support development of a predictive model relating density and thermal properties from first principles. Thermal properties (thermal conductivity, diffusivity, and specific heat) of the foam were found to vary with temperatures from 26°C to 90°C. Thermal conductivity generally increases with increasing temperature for a given initial density and ranges from .0433 W/mK at 26°C to .0811 W/mK at 90°C; thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from .4101 mm2/s at 26°C to .1263 mm2/s at 90°C; and specific heat generally increases with increasing temperature for a given initial density and ranges from .1078 MJ/m3K at 26°C to .6323 MJ/m3K at 90°C. Thermal properties of the solid urethane were also found to vary with temperatures from 26°C to 90°C. Average thermal conductivity generally increases with increasing temperature for a given initial density and ranges from 0.126 to 0.131 W/mK at 26°C to 0.153 to 0.157 W/mK at 90°C; average thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from 0.142 to 0.147 mm2/s at 26°C to 0.124 to 0.125 mm2/s at 90°C; and average specific heat generally increases with increasing temperature for a given initial density and ranges from 0.889 to 0.899 MJ/m3K to 1.229 to 1.274 MJ/m3K at 90°C. The density of both foam and solid urethane decreased with increasing temperature.

More Details

Computational Mechanics for Heterogeneous Materials

Baczewski, Andrew D.; Yarrington, Cole Y.; Bond, Stephen D.; Erikson, William W.; Lehoucq, Richard B.; Mondy, L.A.; Noble, David R.; Pierce, Flint P.; Roberts, Christine C.; Van Swol, Frank

The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem. These fluctuations due to random microstructures also provide a means of characterizing the aleatory uncertainty in material properties at the mesoscale.

More Details

New composite separator pellet to increase power density and reduce size of thermal batteries

Mondy, L.A.; Evans, Lindsey E.; Roberts, Christine C.; Grillet, Anne M.; Soehnel, Melissa M.; Barringer, David A.; DiAntonio, Christopher D.; Chavez, Tom C.; Ingersoll, David I.; Hughes, Lindsey G.

We show that it is possible to manufacture strong macroporous ceramic films that can be backfilled with electrolyte to form rigid separator pellets suitable for use in thermal batteries. Several new ceramic manufacturing processes are developed to produce sintered magnesium oxide foams with connected porosities of over 80% by volume and with sufficient strength to withstand the battery manufacturing steps. The effects of processing parameters are quantified, and methods to imbibe electrolyte into the ceramic scaffold demonstrated. Preliminary single cell battery testing show that some of our first generation pellets exhibit longer voltage life with comparable resistance at the critical early times to that exhibited by a traditional pressed pellets. Although more development work is needed to optimize the processes to create these rigid separator pellets, the results indicate the potential of such ceramic separator pellets to be equal, if not superior to, current pressed pellets. Furthermore, they could be a replacement for critical material that is no longer available, as well as improving battery separator strength, decreasing production costs, and leading to shorter battery stacks for long-life batteries.

More Details
Results 26–50 of 171
Results 26–50 of 171