Low-velocity impact of 2D woven glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) composite laminates was studied experimentally and numerically. Hybrid laminates containing blocked layers of GFRP/CFRP/GFRP with all plies oriented at 0° were investigated. Relatively high impact energies were used to obtain full perforation of the laminate in a low-velocity impact setup. Numerical simulations were carried out using the in-house transient dynamics finite element code, Sierra/SM, developed at Sandia National Laboratories. A three-dimensional continuum damage model was used to describe the response of a woven composite ply. Two methods for handling delamination were considered and compared: (1) cohesive zone modeling and (2) continuum damage mechanics. The reduced model size achieved by omission of the cohesive zone elements produced acceptable results at reduced computational cost. The comparison between different modeling techniques can be used to inform modeling decisions relevant to low velocity impact scenarios. The modeling was validated by comparing with the experimental results and showed good agreement in terms of predicted damage mechanisms and impactor velocity and force histories.
Nematic liquid crystal elastomers (LCEs) are a unique class of network polymers with the potential for enhanced mechanical energy absorption and dissipation capacity over conventional network polymers because they exhibit both conventional viscoelastic behavior and soft-elastic behavior (nematic director changes under shear loading). This additional inelastic mechanism makes them appealing as candidate damping materials in a variety of applications from vibration to impact. The lattice structures made from the LCEs provide further mechanical energy absorption and dissipation capacity associated with packing out the porosity under compressive loading. Understanding the extent of mechanical energy absorption, which is the work per unit mass (or volume) absorbed during loading, versus dissipation, which is the work per unit mass (or volume) dissipated during a loading cycle, requires measurement of both loading and unloading response. In this study, a bench-top linear actuator was employed to characterize the loading-unloading compressive response of polydomain and monodomain LCE polymers and polydomain LCE lattice structures with two different porosities (nominally, 62% and 85%) at both low and intermediate strain rates at room temperature. As a reference material, a bisphenol-A (BPA) polymer with a similar glass transition temperature (9 °C) as the nematic LCE (4 °C) was also characterized at the same conditions for comparing to the LCE polymers. Based on the loading-unloading stress-strain curves, the energy absorption and dissipation for each material at different strain rates (0.001, 0.1, 1, 10 and 90 s-1) were calculated with considerations of maximum stress and material mass/density. The strain-rate effect on the mechanical response and energy absorption and dissipation behaviors was determined. The energy dissipation ratio was also calculated from the resultant loading and unloading stress-strain curves. All five materials showed significant but different strain rate effects on energy dissipation ratio. The solid LCE and BPA materials showed greater energy dissipation capabilities at both low (0.001 s−1) and high (above 1 s−1) strain rates, but not at the strain rates in between. The polydomain LCE lattice structure showed superior energy dissipation performance compared with the solid polymers especially at high strain rates.
Long, Kevin N.; Chung, Christopher; Luo, Chaoqian; Yakacki, Christopher M.; Song, Bo; Yu, Kai
Liquid crystal elastomers (LCEs) exhibit unique mechanical properties of soft elasticity and enhanced energy dissipation with rate dependency. They are potentially transformative materials for applications in mechanical impact mitigation and vibration isolation. However, previous studies have primarily focused on the mechanics of LCEs under equilibrium and quasistatic loading conditions. Critical knowledge gaps exist in understanding their rate-dependent behaviors, which are a complex mixture of traditional network viscoelasticity and the soft elastic behaviors with changes in the mesogen orientation and order parameter. Together, these inelastic mechanisms lead to unusual rate-dependent energy absorption responses of LCEs. In this work, we developed a viscoelastic constitutive theory for monodomain nematic LCEs to investigate how multiple underlying sources of inelasticity manifest in the rate-dependent and dissipative behaviors of monodomain LCEs. The theoretical modeling framework combines the neo-classical network theory with evolution rules for the mesogen orientation and order parameter with conventional viscoelasticity. The model is calibrated with uniaxial tension and compression data spanning six decades of strain rates. The established 3D constitutive model enables general loading predictions taking the initial mesogen orientation and order parameter as inputs. Additionally, parametric studies were performed to further understand the rate dependence of monodomain LCEs in relation to their energy absorption characteristics. Based on the parametric studies, particularly loading scenarios are identified as conditions where LCEs outperform conventional elastomers regarding energy absorption.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
Traditional electronics assemblies are typically packaged using physically or chemically blown potted foams to reduce the effects of shock and vibration. These potting materials have several drawbacks including manufacturing reliability, lack of internal preload control, and poor serviceability. A modular foam encapsulation approach combined with additively manufactured (AM) silicone lattice compression structures can address these issues for packaged electronics. These preloaded silicone lattice structures, known as foam replacement structures (FRSs), are an integral part of the encapsulation approach and must be properly characterized to model the assembly stresses and dynamics. In this study, dynamic test data is used to validate finite element models of an electronics assembly with modular encapsulation and a direct ink write (DIW) AM silicone FRS. A variety of DIW compression architectures are characterized, and their nominal stress-strain behavior is represented with hyperfoam constitutive model parameterizations. Modeling is conducted with Sierra finite element software, specifically with a handoff from assembly preloading and uniaxial compression in Sierra/Solid Mechanics to linear modal and vibration analysis in Sierra/Structural Dynamics. This work demonstrates the application of this advanced modeling workflow, and results show good agreement with test data for both static and dynamic quantities of interest, including preload, modal, and vibration response.
This report is a comprehensive guide to the nonlinear viscoelastic Spectacular model, which is an isotropic, thermo-rheologically simple constitutive model for glass-forming materials, such as amorphous polymers. Spectacular is intermediate in complexity to the previous PEC and SPEC models (Potential Energy Clock and Simplified Potential Energy Clock models, respectively). The model form consists of two parts: a Helmholtz free energy functional and a nonlinear material clock that controls the rate of viscoelastic relaxation. The Helmholtz free energy is derived from a series expansion about a reference state. Expressions for the stress and entropy functionals are derived from the Helmholtz free energy following the Rational Mechanics approach. The material clock depends on a simplified expression for the potential energy, which itself is a functional of the temperature and strain histories. This report describes the thermo-mechanical theory of Spectacular, the numerical methods for time-integrating the model, model verification for its implementation in LAMÉ, a user guide for its implementation in LAMÉ, and ideas for future work. A number of appendices provide supplementary mathematical details and a description of the procedure used to derive the simplified potential energy from the full expression for the potential energy. The goal of this report is create a convenient point-of-entry for engineers who wish to learn more about Spectacular, but also to serve as a reference manual for advanced users of the model.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
In polymer-filled granular composites, damage may develop in mechanical loading prior to material failure. Damage mechanisms such as microcracking or plastic deformation in the binder phase can substantially alter the material's mesostructure. For energetic materials, such as solid propellants and plastic bonded explosives, these mesostructural changes can have far reaching effects including degraded mechanical properties, potentially increased sensitivity to further insults, and changes in expected performance. Unfortunately, predicting damage is nontrivial due to the complex nature of these composites and the entangled interactions between inelastic mechanisms. In this work, we assess the current literature of experimental knowledge, focusing on the pressure-dependent shear response, and propose a simple simulation framework of bonded particles to study four limiting-case material formulations at both meso- and macro-scales. To construct the four cases, we systematically vary the relative interfacial strength between the polymer binder and granular filler phase and also vary the polymer's glass transition temperature relative to operating temperature which determines how much the binder can plastically deform. These simulations identify key trends in global mechanical response, such as the emergence of strain hardening or softening regimes with increasing pressure which qualitatively resemble experimental results. By quantifying the activation of different inelastic mechanisms, such as bonds breaking and plastically straining, we identify when each mechanism becomes relevant and provide insight into potential origins for changes in mechanical responses. The locations of broken bonds are also used to define larger, mesoscopic cracks to test various metrics of damage. We primarily focus on triaxial compression, but also test the opposite case of triaxial extension to highlight the impact of Lode angle on mechanical behavior.
The calibration of solid constitutive models with full-field experimental data is a long-standing challenge, especially in materials that undergo large deformations. In this paper, we propose a physics-informed deep-learning framework for the discovery of hyperelastic constitutive model parameterizations given full-field surface displacement data and global force-displacement data. Contrary to the majority of recent literature in this field, we work with the weak form of the governing equations rather than the strong form to impose physical constraints upon the neural network predictions. The approach presented in this paper is computationally efficient, suitable for irregular geometric domains, and readily ingests displacement data without the need for interpolation onto a computational grid. A selection of canonical hyperelastic material models suitable for different material classes is considered including the Neo–Hookean, Gent, and Blatz–Ko constitutive models as exemplars for general non-linear elastic behaviour, elastomer behaviour with finite strain lock-up, and compressible foam behaviour, respectively. We demonstrate that physics informed machine learning is an enabling technology and may shift the paradigm of how full-field experimental data are utilized to calibrate constitutive models under finite deformations.
Polymers are widely used as damping materials in vibration and impact applications. Liquid crystal elastomers (LCEs) are a unique class of polymers that may offer the potential for enhanced energy absorption capacity under impact conditions over conventional polymers due to their ability to align the nematic phase during loading. Being a relatively new material, the high rate compressive properties of LCEs have been minimally studied. Here, we investigated the high strain rate compression behavior of different solid LCEs, including cast polydomain and 3D-printed, preferentially oriented monodomain samples. Direct ink write (DIW) 3D printed samples allow unique sample designs, namely, a specific orientation of mesogens with respect to the loading direction. Loading the sample in different orientations can induce mesogen rotation during mechanical loading and subsequently different stress-strain responses under impact. We also used a reference polymer, bisphenol-A (BPA) cross-linked resin, to contrast LCE behavior with conventional elastomer behavior.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
Constitutive model parameterizations for the General Plastics EF4003 low density 3 pound per cubic foot are needed for design and qualification purposes in normal and abnormal mechanical simulations. The material is expected to be deformed in two ways: first during preloading, and second under impact conditions of the system (transient dynamic). All analyses are to be performed at room temperature. The goal is to provide the analysis community a robust constitutive model parameterization to represent the compression behavior of the EF4003 foam from small deformations up to massive compressive deformations when the foam is densifying. It is worth noting the EF4003 exhibits anisotropy in its stress-strain behavior between the rise and transverse directions (See figure 2.8c-d) as well as plateau behavior that is very likely to cause material stability issues, due to the buckling transition, (and has historically done so) when using Sandia’s current workhorse models for flexible foams, Hyperfoam and Flex Foam. A Stability-informed Hyperfoam parameterization procedure is developed and executed to calibrate a hyperfoam model for the EF4003 room temperature, transversely loaded data. A rise orientation parameterization was not attempted due to localization in the experiments.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
Luo, Chaoqian; Chung, Christopher; Yakacki, Christopher M.; Long, Kevin N.; Yu, Kai
Liquid crystal elastomers (LCEs) exhibit soft elasticity due to the alignment and reorientation of mesogens upon mechanical loading, which provides additional mechanisms to absorb and dissipate energy. This enhanced response makes LCEs potentially transformative materials for biomedical devices, tissue replacements, and protective equipment. However, there is a critical knowledge gap in understanding the highly rate-dependent dissipative behaviors of LCEs due to the lack of real-time characterization techniques that probe the microscale network structure and link it to the mechanical deformation of LCEs. In this work, we employ in situ optical measurements to evaluate the alignment and reorientation degree of mesogens in LCEs. The data are correlated to the quantitative physical analysis using polarized Fourier-transform infrared spectroscopy. The time scale of mesogen alignment is determined at different strain levels and loading rates. The mesogen reorientation kinetics is characterized to establish its relationship with the macroscale tensile strain, and compared to theoretical predictions. Overall, this work provides the first detailed study on the time-dependent evolution of mesogen alignment and reorientation in deformed LCEs. It also provides an effective and more accessible approach for other researchers to investigate the structural-property relationships of different types of polymers.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
Soft-elasticity in monodomain liquid crystal elastomers (LCEs) is promising for impact-absorbing applications where strain energy is ideally absorbed at constant stress. Conventionally, compressive and impact studies on LCEs have not been performed given the notorious difficulty synthesizing sufficiently large monodomain devices. Here, we use direct-ink writing 3D printing to fabricate bulk (>cm3) monodomain LCE devices and study their compressive soft-elasticity over 8 decades of strain rate. At quasi-static rates, the monodomain soft-elastic LCE dissipated 45% of strain energy while comparator materials dissipated less than 20%. At strain rates up to 3000 s−1, our soft-elastic monodomain LCE consistently performed closest to an ideal-impact absorber. Drop testing reveals soft-elasticity as a likely mechanism for effectively reducing the severity of impacts – with soft elastic LCEs offering a Gadd Severity Index 40% lower than a comparable isotropic elastomer. Lastly, we demonstrate tailoring deformation and buckling behavior in monodomain LCEs via the printed director orientation.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
This SAND report fulfills the completion requirements for the ASC Physics and Engineering Modeling Level 2 Milestone 7836 during Fiscal Year 2021. The Sandia Simplified potential energy clock (SPEC) non-linear viscoelastic constitutive model was developed to predict a whole host of polymer glass physical behaviors in order to provide a tool to assess the effects of stress on these materials over their lifecycle. Polymer glasses are used extensively in applications such as electronics packaging, where encapsulants and adhesives can be critical to device performance. In this work, the focus is on assessing the performance of the model in predicting material evolution associated with long-term physical aging, an area that the model has not been fully vetted in. These predictions are key to utilizing models to help demonstrate electronics packaging component reliability over decades long service lives, a task that is very costly and time consuming to execute experimentally. The initiating hypothesis for the work was that a model calibration process can be defined that enables confidence in physical aging predictions under ND relevant environments and timescales without sacrificing other predictive capabilities. To test the hypothesis, an extensive suite of calibration and aging data was assembled from a combination of prior work and collaborating projects (Aging and Lifetimes as well as the DoD Joint Munitions Program) for two mission relevant epoxy encapsulants, 828DGEBA/DEA and 828DGEBA/T403. Multiple model calibration processes were developed and evaluated against the entire set of data for each material. A qualitative assessment of each calibration's ability to predict the wide range of aging responses was key to ranking the calibrations against each other. During this evaluation, predictions that were identified as non-physical, i.e., demonstrated something that was qualitatively different than known material behavior, were heavily weighted against the calibration performance. Thus, unphysical predictions for one aspect of aging response could generate a lower overall rating for a calibration process even if that process generated better quantitative predictions for another aspect of aging response. This insurance that all predictions are qualitatively correct is important to the overall aim of utilizing the model to predict residual stress evolution, which will depend on the interplay amongst the different material aging responses. The DSC-focused calibration procedure generated the best all-around aging predictions for both materials, demonstrating material models that can qualitatively predict the whole host of different physical aging responses that have been measured. This step forward in predictive capability comes from an unanticipated source, utilization of calorimetry measurements to specify model parameters. The DSC-focused calibration technique performed better than compression-focused techniques that more heavily weigh measurements more closely related to the structural responses to be predicted. Indeed, the DSC-focused calibration procedure was only possible due to recent incorporation of the enthalpy and heat capacity features into SPEC that was newly verified during this L2 milestone. Fundamentally similar aspects of the two material model calibrations as well as parametric studies to assess sensitives of the aging predictions are discussed within the report. A perspective on the next steps to the overall goal of residual stress evolution predictions under stockpile conditions closes the report.
We have characterized the three-dimensional evolution of microstructural anisotropy of a family of elastomeric foams during uniaxial compression via in-situ X-ray computed tomography. Flexible polyurethane foam specimens with densities of 136, 160 and 240 kg/m3 were compressed in uniaxial stress tests both parallel and perpendicular to the foam rise direction, to engineering strains exceeding 70%. The uncompressed microstructures show slightly elongated ellipsoidal pores, with elongation aligned parallel to the foam rise direction. The evolution of this microstructural anisotropy during deformation is quantified based on the autocorrelation of the image intensity, and verified via the mean intercept length as well as the shape of individual pores. Trends are consistent across all three methods. In the rise direction, the material remains transversely anisotropic throughout compression. Anisotropy initially decreases with compression, reaches a minimum, then increases up to large strains, followed by a small decrease in anisotropy at the largest strains as pores collapse. Compression perpendicular to the foam rise direction induces secondary anisotropy with respect to the compression axis, in addition to primary anisotropy associated with the foam rise direction. In contrast to compression in the rise direction, primary anisotropy initially increases with compression, and shows a slight decrease at large strains. These surprising non-monotonic trends and qualitative differences in rise and transverse loading are explained based on the compression of initially ellipsoidal pores. Microstructural anisotropy trends reflect macroscopic stress-strain and lateral strain response. These findings provide novel quantitative connections between three-dimensional microstructure and anisotropy in moderate density polymer foams up to large deformation, with important implications for understanding complex three-dimensional states of deformation.
Mechanical impact protection is an important consideration in many applications, ranging from product transportation to sports. Cellular materials are typically used due to their desirable energy absorption properties and light weight. However, their large deformation and rate dependent responses (especially of polymer foams) are challenging to consider in design. Additionally, the use of foams with uniform properties, such as uniform density and uniform stiffness, often restricts the designed foams to only be suitable for a narrow range of mechanical impact conditions whereas real applications commonly face unpredictable situations. 3D printing offers fabrication flexibility and thus opens the door to create foams with tailored properties. In this work, we investigate the feasibility of using 3D printing for functionally graded foams (FGFs) that are optimal over a broad range of mechanical environments. The foams are fabricated by the recently developed grayscale digital light processing (g-DLP) method which can print parts with locally designed properties. These foams are tested under drop test conditions and with slower displacement control. We also model the large deformation behavior of FGFs using finite element analysis in which we account for the different viscoelastic behaviors of the distinct grayscale regions. We then use the model to examine the impact mitigation capabilities of FGFs in different loading scenarios. Finally, we show how FGFs can be used to satisfy real-world design goals using the case study of a motorcycle helmet. In contrast to prior work, we investigate continuous, functionally graded foams of a single density that differ in their viscoelastic responses. This work provides further insight into the benefits of viscoelastic properties and modulus graded foams and presents a manufacturing approach that can be used to produce the next generation of flexible lattice foams as mechanical absorbers.
Glass–ceramics have received recent attention for use in glass–ceramic to metal hermetic seals. Due to their heterogeneous microstructure, these materials exhibit a number of advantageous responses over conventional glass based seals. Key amongst them is the possibility of a controllable thermal strain response and apparent coefficient of thermal expansion which may be used to minimize thermally induced residual stresses for aforementioned seals. These behaviors result from an inorganic glass matrix and variety of crystalline ceramic phases including silica polymorph(s) that may undergo reversible solid-to-solid transformations with associated inelastic strain. Correspondingly, these materials exhibit complex thermomechanical responses associated with multiple inelastic mechanisms (viscoelasticity and phase transformation). While modeling these behaviors is essential for developing and analyzing the corresponding applications, no such model exists. Therefore, in this work a three-dimensional continuum constitutive model for glass–ceramic materials combining these various inelastic mechanisms is developed via an internal state variable approach. A corresponding fully implicit three dimensional numerical formulation is also proposed and implemented. The model is used to simulate existing experiments and validate the proposed formalism. As an example, the simple seal problem of a glass–ceramic seal inside a concentric metal shell is explored. Finally, the impact of the cooling rates, viscoelastic shift factors, and inelastic strain on final residual stress state are all investigated and the differing contributions highlighted.