Publications

Results 84101–84125 of 96,771

Search results

Jump to search filters

Group tele-immersion:enabling natural interactions between groups at distant sites

Yang, Christine L.; Stewart, Corbin J.

We present techniques and a system for synthesizing views for video teleconferencing between small groups. In place of replicating one-to-one systems for each pair of users, we create a single unified display of the remote group. Instead of performing dense 3D scene computation, we use more cameras and trade-off storage and hardware for computation. While it is expensive to directly capture a scene from all possible viewpoints, we have observed that the participants viewpoints usually remain at a constant height (eye level) during video teleconferencing. Therefore, we can restrict the possible viewpoint to be within a virtual plane without sacrificing much of the realism, and in cloning so we significantly reduce the number of required cameras. Based on this observation, we have developed a technique that uses light-field style rendering to guarantee the quality of the synthesized views, using a linear array of cameras with a life-sized, projected display. Our full-duplex prototype system between Sandia National Laboratories, California and the University of North Carolina at Chapel Hill has been able to synthesize photo-realistic views at interactive rates, and has been used to video conference during regular meetings between the sites.

More Details

Corrective measures evaluation report for Tijeras Arroyo groundwater

Collins, Sue S.

This Corrective Measures Evaluation report was prepared as directed by a Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for Tijeras Arroyo Groundwater. Supporting information includes background concerning the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. The evaluation of remedial alternatives included identifying and describing four remedial alternatives, an overview of the evaluation criteria and approach, comparing remedial alternatives to the criteria, and selecting the preferred remedial alternative. As a result of the Corrective Measures Evaluation, monitored natural attenuation of the contaminants of concern (trichloroethene and nitrate) is the preferred remedial alternative for implementation as the corrective measure for Tijeras Arroyo Groundwater. Design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are also presented.

More Details

Spatially resolved monitoring of aqueous CdS nanoparticle synthesis in a microreactor

2005 AIChE Spring National Meeting, Conference Proceedings

Sounart, Thomas L.; Bickel, Jessica E.; Tallant, David T.; Matzke, Carolyn M.; Voigt, James A.; Michalske, Terry A.

The synthesis of cysteine-capped CdS quantum dot nanocrystals (CdS-cys) between two interdiffusing reagent streams in a continuous flow microfluidic reactor was investigated. Spatially resolved fluorescence imaging and spectroscopy of the microreactor at various reactant concentrations and flow rates was used to study nucleation and growth of these particles. The laminar flow of the impinging streams allowed for controlled diffusional mixing of the reacting cadmium and sulfide ions at the boundary between the two solutions, while the capping agent was present in one or both of the solutions in excess. The results show that the photoluminescence of these particles grown under these microfluidic conditions differs from those grown in batch reactors.

More Details

The structure of poly(ethylene oxide) liquids: Comparison of integral equation theory with molecular dynamics simulations and neutron scattering

Polymer

Curro, John G.; Frischknecht, Amalie F.

Polymer reference interaction site model (PRISM) calculations and molecular dynamics (MD) simulations were carried out on poly(ethylene oxide) liquids using a force field of Smith, Jaffe, and Yoon. The intermolecular pair correlation functions and radius of gyration from theory were in very good agreement with MD simulations when the partial charges were turned off. When the charges were turned on, considerably more structure was seen in the intermolecular correlations obtained from MD simulation. Moreover, the radius of gyration increased by 38% due to electrostatic repulsions along the chain backbone. Because the partial charges greatly affect the structure, significant differences were seen between the PRISM calculations (without charges) and the wide angle neutron scattering measurements of Annis and coworkers for the total structure factor, and the hydrogen/hydrogen intermolecular correlation function. This is in contrast to previous PRISM calculations on poly (dimethyl siloxane). © 2005 Elsevier Ltd. All rights reserved.

More Details

Nanoliter MEMS package gas sampling to determine hermeticity

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Thornberg, Steven M.; Hochrein, James M.; Padilla, Therese A.; Abraham, Ion C.

Maintaining the integrity of the internal atmosphere of a hermetic device is essential for long-term component reliability because it is within this environment that all internal materials age. As MEMS package sizes decrease with miniaturization, characterization of the internal atmosphere becomes increasingly difficult. Typical transistor metal cans (e.g., TO-5 type) and large MEMS devices have internal volumes of tenths of a milliliter. Last year, gas-sampling methods for smaller-sized MEMS packages were developed and successfully demonstrated on volumes as low as 3 microliters (package outside dimensions: ∼1 × 2 × 5 mm). This year, we present gas sampling methods and results for a much smaller MEMS package having an internal volume of 30 nanoliters, two orders of magnitude lower than the previous small package. After entirely redesigning the previous sampling manifold, several of the 30 nanoliter MEMS were gas sampled successfully and results showed the intended internal gas atmosphere of nitrogen was sealed inside the package. The technique is a radical jump from previous methods because not only were these MEMS packages sampled, but also the gas from each package was analyzed dozens of times over the course of about 20 minutes. Additionally, alternate methods for gas analyses not using helium or fluorinert will be presented.

More Details

Temperature rise of the silicon mask-PMMA resist assembly during LIGA exposure

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Ting, Aili T.

Deep X-ray lithography on PMMA resist is used in the LIGA process. The resist is exposed to synchrotron X-rays through a patterned mask and then is developed in a liquid developer to make high aspect ratio microstructures. This work addresses the thermal analysis and temperature rise of the mask-resist assembly during exposure at the Advanced Light Source (ALS) synchrotron. The concern is that the thermal expansion will lower the accuracy of the lithography. We have developed a three-dimensional finite-element model of the mask and resist assembly. We employed the LIGA exposure-development software LEX-D and the commercial software ABAQUS to calculate heat transfer of the assembly during exposure. The calculations of assembly maximum temperature have been compared with temperature measurements conducted at ALS. The temperature rise in the silicon mask and the mask holder comes directly from the X-ray absorption, but forced convection of nitrogen jets carry away a significant portion of heat energy from the mask surface, while natural convection plays a negligible role. The temperature rise in PMMA resist is mainly from heat conducted from the silicon substrate backward to the resist and from the mask plate through inner cavity air forward to the resist, while the X-ray absorption is only secondary. Therefore, reduction of heat flow conducted from both substrate and cavity air to the resist is essential. An improved water-cooling block is expected to carry away most heat energy along the main heat conductive path, leaving the resist at a favorable working temperature.

More Details

Polymeric microfluidic devices for the monitoring and separation of water-borne pathogens utilizing insulative dielectrophoresis

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Mcgraw, Gregory J.; Davalos, Rafael V.; Brazzle, John D.; Hachman, John T.; Hunter, Marion C.; Chames, Jeffery M.; Fiechtner, Gregory J.; Cummings, Eric B.; Fintschenko, Yolanda F.; Simmons, Blake A.

We have successfully demonstrated selective trapping, concentration, and release of various biological organisms and inert beads by insulator-based dielectrophoresis within a polymeric microfluidic device. The microfluidic channels and internal features, in this case arrays of insulating posts, were initially created through standard wet-etch techniques in glass. This glass chip was then transformed into a nickel stamp through the process of electroplating. The resultant nickel stamp was then used as the replication tool to produce the polymeric devices through injection molding. The polymeric devices were made of Zeonor® 1060R, a polyolefin copolymer resin selected for its superior chemical resistance and optical properties. These devices were then optically aligned with another polymeric substrate that had been machined to form fluidic vias. These two polymeric substrates were then bonded together through thermal diffusion bonding. The sealed devices were utilized to selectively separate and concentrate a variety of biological pathogen simulants and organisms. These organisms include bacteria and spores that were selectively concentrated and released by simply applying D.C. voltages across the plastic replicates via platinum electrodes in inlet and outlet reservoirs. The dielectrophoretic response of the organisms is observed to be a function of the applied electric field and post size, geometry and spacing. Cells were selectively trapped against a background of labeled polystyrene beads and spores to demonstrate that samples of interest can be separated from a diverse background. We have implemented a methodology to determine the concentration factors obtained in these devices.

More Details

Damage of MEMS thermal actuators heated by laser irradiation

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Phinney, Leslie M.; Rhodes, Kelly A.; Sackos, John T.; Walraven, J.A.

Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

More Details

Fabrication and characterization of polymer microfluidic devices for BioAgent detection

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Morales, Alfredo M.; Brazzle, John D.; Crocker, Robert W.; Domeier, Linda A.; Goods, Eric B.; Hachman, John T.; Harnett, Cindy K.; Hunter, Marion C.; Mani, Seethambal S.; Mosier, Bruce P.; Simmons, Blake S.

Sandia and Lawrence Livermore National Laboratories are developing a briefcase-sized, broad-spectrum bioagent detection system. This autonomous instrument, the BioBriefcase, will monitor the environment and warn against bacterium, virus, and toxin based biological attacks. At the heart of this device, inexpensive polymer microfluidic chips will carry out sample preparation and analysis. Fabrication of polymer microfluidic chips involves the creation of a master in etched glass; plating of the master to produce a nickel stamp; large lot chip replication by injection molding; and thermal chip sealing. Since the performance and reliability of microfluidic chips are very sensitive to fluidic impedance and to electromagnetic fluxes, the microchannel dimensions and shape have to be tightly controlled during chip fabrication. In this talk, we will present an overview of chip design and fabrication. Metrology data collected at different fabrication steps and the dimensional deviations of the polymer chip from the original design will be discussed.

More Details

Frequency response of piezoresistive-based MASA resonators with electrostatic vertical comb-drive actuation

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Stafford, Harold L.; Epp, David E.

We report on experimental work that characterizes the frequency response of resonators of Microfabricated Acoustic Spectrum Analyzer (MASA) devices which were fabricated using Sandia's SUMMiT™ processing technology. A 1.1 micron silicon nitride layer was used in the fabrication to isolate the sense mechanism from the actuation mechanism. The devices are actuated using electrostatic vertical comb-drive actuation in a 30-50 mTorr vacuum and the frequency response is measured using a piezo-resistive readout mechanism. Two MASA devices are tested using comb-drive ac signals (e.g., 200mV) superimposed on a dc bias (e.g., 15V). In addition, dc bias voltages placed on the comb-drive are shown to tune the resonant frequency of the resonator. The frequency response of the piezo-resistive readout mechanism is measured using a 10V dc supply voltage supplied across its Wheatstone bridge. The results show that the piezo-resistive readout mechanism can detect resonant behavior and determine resonant frequency. A laser doppler vibrometer is used as an independent means to characterize the frequency response and verify the results.

More Details

Fabrication techniques for low loss silicon nitride waveguides

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Shaw, Michael J.; Guo, Junpeng; Vawter, Gregory A.; Habermehl, Scott D.; Sullivan, Charles T.

Optical waveguide propagation loss due to sidewall roughness, material impurity and inhomogeneity has been the focus of many studies in fabricating planar lightwave circuits (PLC's)1,2,3 In this work, experiments were carried out to identify the best fabrication process for reducing propagation loss in single mode waveguides comprised of silicon nitride core and silicon dioxide cladding material. Sidewall roughness measurements were taken during the fabrication of waveguide devices for various processing conditions. Several fabrication techniques were explored to reduce the sidewall roughness and absorption in the waveguides. Improvements in waveguide quality were established by direct measurement of waveguide propagation loss. The lowest linear waveguide loss measured in these buried channel waveguides was 0.1 dB/cm at a wavelength of 1550 nm. This low propagation loss along with the large refractive index contrast between silicon nitride and silicon dioxide enables high density integration of photonic devices and small PLC's for a variety of applications in photonic sensing and communications.

More Details

High-efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator

Proceedings of SPIE - The International Society for Optical Engineering

Armstrong, Darrell J.; Smith, A.V.

We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803 nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency λ = 320 nm pulses with energies up to 140 mJ.

More Details

Electrically-pumped 850-nm micromirror VECSELs

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Keeler, Gordon A.; Serkland, Darwin K.; Geib, K.M.; Peake, Gregory M.; Mar, Alan M.

Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n-type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

More Details

Adsorption of myoglobin to Cu(II)-IDA and Ni(II)-IDA functionalized langmuir monolayers: Study of the protein layer structure during the adsorption process by neutron and X-ray reflectivity

Langmuir

Kent, Michael S.; Yim, Hyun Y.; Sasaki, Darryl Y.; Satija, Sushil; Seo, Young S.; Majewski, J.

The structure and orientation of adsorbed myoglobin as directed by metal-histidine complexation at the liquid-film interface was studied as a function of time using neutron and X-ray reflectivity (NR and XR, respectively). In this system, adsorption is due to the interaction between iminodiacetate (IDA)-chelated divalent metal ions Ni(II) and Cu(II) and histidine moieties at the outer surface of the protein. Adsorption was examined under conditions of constant area per lipid molecule at an initial pressure of 40 mN/m. Adsorption occurred over a time period of about 15 h, allowing detailed characterization of the layer structure throughout the process. The layer thickness and the in-plane averaged segment volume fraction were obtained at roughly 40 min intervals by NR. The binding constant of histidine with Cu(II)-IDA is known to be about four times greater than that of histidine with Ni(II)-IDA. The difference in interaction energy led to significant differences in the structure of the adsorbed layer. For Cu(II)-IDA, the thickness of the adsorbed layer at low protein coverage was ≤20 Å and the thickness increased almost linearly with increasing coverage to 42 Å. For Ni(II)-IDA, the thickness at low coverage was ∼38 Å and increased gradually with coverage to 47 Å. The in-plane averaged segment volume fraction of the adsorbed layer independently confirmed a thinner layer at low coverage for Cu(II)-IDA. These structural differences at the early stages are discussed in terms of either different preferred orientations for isolated chains in the two cases or more extensive conformational changes upon adsorption in the case of Cu(II)-IDA. Subphase dilution experiments provided additional insight, indicating that the adsorbed layer was not in equilibrium with the bulk solution even at low coverages for both IDA-chelated metal ions. We conclude that the weight of the evidence favors the interpretation based on more extensive conformational changes upon adsorption to Cu(II)-IDA. © 2005 American Chemical Society.

More Details
Results 84101–84125 of 96,771
Results 84101–84125 of 96,771