GTO Peer Review GT-Mod
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Wind energy can provide renewable, sustainable electricity to rural Native homes and power schools and businesses. It can even provide tribes with a source of income and economic development. The purpose of this research is to determine the potential for deploying community and utility-scale wind renewable technologies on Turtle Mountain Band of Chippewa tribal lands. Ideal areas for wind technology development were investigated, based on wind resources, terrain, land usage, and other factors. This was done using tools like the National Renewable Energy Laboratory Wind Prospector, in addition to consulting tribal members and experts in the field. The result was a preliminary assessment of wind energy potential on Turtle Mountain lands, which can be used to justify further investigation and investment into determining the feasibility of future wind technology projects.
Journal of Computational Physics
A new method for generating locally orthogonal polygonal meshes from a set of generator points is presented in which polygon areas are a constraint. The area constraint property is particularly useful for particle methods where moving polygons track a discrete portion of material. Because Voronoi polygon meshes have some very attractive mathematical and numerical properties for numerical computation, a generalization of Voronoi polygon meshes was formulated that enforces a polygon area constraint. Area constrained moving polygonal meshes allow one to develop hybrid particle-mesh numerical methods that display some of the most attractive features of each approach. It is shown that this mesh construction method can continuously reconnect a moving, unstructured polygonal mesh in a pseudo-Lagrangian fashion without change in cell area/volume, and the method's ability to simulate various physical scenarios is shown. The advantages are identified for incompressible fluid flow calculations, with demonstration cases that include material discontinuities of all three phases of matter and large density jumps.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The ECP Proxy Application Project has an annual milestone to assess the state of ECP proxy applications and their role in the overall ECP ecosystem. Our FY22 March/April milestone (ADCD- 504-28) proposed to: Assess the fidelity of proxy applications compared to their respective parents in terms of kernel and I/O behavior, and predictability. Similarity techniques will be applied for quantitative comparison of proxy/parent kernel behavior. MACSio evaluation will continue and support for OpenPMD backends will be explored. The execution time predictability of proxy apps with respect to their parents will be explored through a carefully designed scaling study and code comparisons. Note that in this FY, we also have quantitative assessment milestones that are due in September and are, therefore, not included in the description above or in this report. Another report on these deliverables will be generated and submitted upon completion of these milestones. To satisfy this milestone, the following specific tasks were completed: Study the ability of MACSio to represent I/O workloads of adaptive mesh codes. Re-define the performance counter groups for contemporary Intel and IBM platforms to better match specific hardware components and to better align across platforms (make cross-platform comparison more accurate). Perform cosine similarity study based on the new performance counter groups on the Intel and IBM P9 platforms. Perform detailed analysis of performance counter data to accurately average and align the data to maintain phases across all executions and develop methods to reduce the set of collected performance counters used in cosine similarity analysis. Apply a quantitative similarity comparison between proxy and parent CPU kernels. Perform scaling studies to understand the accuracy of predictability of the parent performance using its respective proxy application. This report presents highlights of these efforts.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.