Publications

Results 6376–6400 of 99,299

Search results

Jump to search filters

Statistical perspective on embrittling potency for intergranular fracture

Physical Review Materials

Fernandez, M.E.; Dingreville, Remi; Spearot, D.E.

Embrittling potency is a thermodynamic metric that assesses the influence of solute segregation to a grain boundary (GB) on intergranular fracture. Historically, authors of studies have reported embrittling potency as a single scalar value, assuming a single segregation site of importance at a GB and a particular cleavage plane. However, the topography of intergranular fracture surfaces is not generally known a priori. Accordingly, in this paper, we present a statistical ensemble approach to compute embrittling potency, where many free surface (FS) permutations are systematically considered to model fracture of a GB. The result is a statistical description of the thermodynamics of GB embrittlement. As a specific example, embrittling potency distributions are presented for Cr segregation to sites at two Ni (111) symmetric tilt GBs using atomistic simulations. We show that the average embrittling potency for a particular GB site, considering an ensemble of FS permutations, is not equal to the embrittling potency computed using the lowest energy pair of FSs. A mean GB embrittlement is proposed, considering both the likelihood of formation of a particular FS and the probability of solute occupancy at each GB site, to compare the relative embrittling behavior of two distinct GBs.

More Details

FY22 Progress on Multicontinuum Methods in Containment

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason E.; Paul, Matthew J.

Estimation of two-phase fluid flow properties is important to understand and predict water and gas movement through the vadose zone for agricultural, hydrogeological, and engineering applications, such as containment transport and/or containment of gases in the subsurface. To estimate rock fluid flow properties and subsequently predict physically realistic processes such as patterns and timing of water, gas, and energy (e.g., heat) movement in the subsurface, laboratory spontaneous water imbibition with simultaneous temperature measurement and numerical modeling methods are presented in the FY22 progress report. A multiple-overlapping-continua conceptual model is used to explain and predict observed complex multi-phenomenological laboratory test behavior during spontaneous imbibition experiments. This report primarily addresses two complexities that arise during the experiments: 1) capturing the late-time behavior of spontaneous imbibition tests with dual porosity; and 2) understanding the thermal perturbation observed at or ahead of the imbibing wetting front, which are associated with adsorption of water in initially dry samples. We use numerical approaches to explore some of these issues, but also lay out a plan for further laboratory experimentation and modeling to best understand and leverage these unique observations.

More Details

Internal energy balance and aerodynamic heating predictions for hypersonic turbulent boundary layers

Physical Review Fluids

Barone, Matthew F.; Nicholson, Gary L.; Duan, Lian

The elemental equation governing heat transfer in aerodynamic flows is the internal energy equation. For a boundary layer flow, a double integration of the Reynolds-averaged form of this equation provides an expression of the wall heat flux in terms of the integrated effects, over the boundary layer, of various physical processes: turbulent dissipation, mean dissipation, turbulent heat flux, etc. Recently available direct numerical simulation data for a Mach 11 cold-wall turbulent boundary layer allows a comparison of the exact contributions of these terms in the energy equation to the wall heat flux with their counterparts modeled in the Reynolds-averaged Navier-Stokes (RANS) framework. Various approximations involved in RANS, both closure models as well as approximations involved in adapting incompressible RANS models to a compressible form, are assessed through examination of the internal energy balance. There are a number of potentially problematic assumptions and terms identified through this analysis. The effect of compressibility corrections of the dilatational dissipation type is explored, as is the role of the modeled turbulent dissipation, in the context of wall heat flux predictions. The results indicate several potential avenues for RANS model improvement for hypersonic cold-wall boundary-layer flows.

More Details

Cybersecurity for Electric Vehicle Charging Infrastructure

Johnson, Jay; Anderson, Benjamin; Wright, Brian J.; Quiroz, Jimmy E.; Berg, Timothy M.; Graves, Russell; Daley, Josh; Phan, Kandy; Kunz, Michael; Pratt, Rick; Carroll, Tom; Oneil, Lori R.; Dindlebeck, Brian; Maloney, Patrick; Brien, David'; Gotthold, David; Varriale, Roland; Bohn, Ted; Hardy, Keith

As the U.S. electrifies the transportation sector, cyberattacks targeting vehicle charging could impact several critical infrastructure sectors including power systems, manufacturing, medical services, and agriculture. This is a growing area of concern as charging stations increase power delivery capabilities and must communicate to authorize charging, sequence the charging process, and manage load (grid operators, vehicles, OEM vendors, charging network operators, etc.). The research challenges are numerous and complicated because there are many end users, stakeholders, and software and equipment vendors interests involved. Poorly implemented electric vehicle supply equipment (EVSE), electric vehicle (EV), or grid operator communication systems could be a significant risk to EV adoption because the political, social, and financial impact of cyberattacks — or public perception of such — would ripple across the industry and produce lasting effects. Unfortunately, there is currently no comprehensive EVSE cybersecurity approach and limited best practices have been adopted by the EV/EVSE industry. There is an incomplete industry understanding of the attack surface, interconnected assets, and unsecured inter faces. Comprehensive cybersecurity recommendations founded on sound research are necessary to secure EV charging infrastructure. This project provided the power, security, and automotive industry with a strong technical basis for securing this infrastructure by developing threat models, determining technology gaps, and identifying or developing effective countermeasures. Specifically, the team created a cybersecurity threat model and performed a technical risk assessment of EVSE assets across multiple manufacturers and vendors, so that automotive, charging, and utility stakeholders could better protect customers, vehicles, and power systems in the face of new cyber threats.

More Details
Results 6376–6400 of 99,299
Results 6376–6400 of 99,299