Recovery of forsterite high-pressure polymorphs in gas gun shock-wave experiments
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) under contract DE-NA0003525. In 2008, a Notice of Intent (NOI) was filed for the Sandia National Laboratories, California (SNL/CA) facility to be covered under the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit) and was issued the WDID No. 2SSO11605. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. Provision D.11 of the General Permit requires the development and implementation of a written Sewer System Management Plan (SSMP). This SSMP is prepared according to the mandatory elements required by Provision D.13 and D.14, as well as the schedule for a population less than 2,500 as outlined in Provision D.15.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The binders, plasticizers, and dispersants in a polyvinylpyrrolidone/polyethylene glycol/glycerin binder system for PZT were evaluated. Kollidon VA 64 was investigated as a possible alternative binder to Kollidon 25 in a PZT powder system. The target amount of PEG300 in a Kollidon VA 64 system was predicted to be 15 to 30 wt.% PEG300 based on Tganalysis by DSC. The compaction properties (slide coefficient, cohesiveness, green strength, etc.) were analyzed for Kollidon VA 64 – x PEG300 – glycerin systems. The properties in the range of x = 0 to 20 for systems without glycerin and x = 5 to 20 for systems with glycerin all exceeded the performance of the baseline Kollidon 25 system, of which VA 64 – 10 wt.% PEG300 – 5 wt.% glycerin with adsorbed moisture was the most promising composition due to a compact cohesiveness of 0.84 at 40 kpsi compared to a baseline of 0.44. The effect of dispersants on the compaction properties of a Kollidon 25 – PEG300 binder system was also analyzed, and the compaction properties were also compared to that of a Aquazol 200 – PEG6000 binder system. The powders with dispersant exhibited comparabl e per formance to the baseline, suggesting good compatibility. The compacts produce with the Aquazol 200 – PEG6000 binder exhibited decreased performance when compared to the baseline .
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Materials
Targeted doping of grain boundaries is widely pursued as a pathway for combating thermal instabilities in nanocrystalline metals. However, certain dopants predicted to produce grain-boundary-segregated nanocrystalline configurations instead form small nanoprecipitates at elevated temperatures that act to kinetically inhibit grain growth. Here, thermodynamic modeling is implemented to select the Mo–Au system for exploring the interplay between thermodynamic and kinetic contributions to nanostructure stability. Using nanoscale multilayers and in situ transmission electron microscopy thermal aging, evolving segregation states and the corresponding phase transitions are mapped with temperature. The microstructure is shown to evolve through a transformation at lower homologous temperatures (<600 °C) where solute atoms cluster and segregate to the grain boundaries, consistent with predictions from thermodynamic models. An increase in temperature to 800 °C is accompanied by coarsening of the grain structure via grain boundary migration but with multiple pinning events uncovered between migrating segments of the grain boundary and local solute clustering. Direct comparison between the thermodynamic predictions and experimental observations of microstructure evolution thus demonstrates a transition from thermodynamically preferred to kinetically inhibited nanocrystalline stability and provides a general framework for decoupling contributions to complex stability transitions while simultaneously targeting a dominant thermal stability regime.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This SAND Report documents the development of organic binder system for PZT 95/5 consisting of Kollidon 90F, PEG300, and glycerin. Binders are a critical component in the manufacture of ceramic components. Low performing binders can result in poor yield and lower performance of ceramic components. This study sought to develop a well performing binder system for PZT 95/5 ceramics to support Ferroelectric Neutron Generator manufacturing. The study explored the glass transition temperature, powder compaction properties, green strengths, and thermal decomposition over a wide composition range. An optimal composition was found consisting of 1.3 wt.% Kollidon 90F, 0.5 wt.% PEG300, and 0.2 wt.% glycerin, and incorporating humidity conditioning . The results showed that the optimized binder exhibited improved compaction performance and enhanced green strength compared to a baseline binder and at lower loading. Further, sintered PZT 95/5 parts prepared using the optimized binder exhibited ~5% improved polarization performance without alteration to the microstructure.
Abstract not provided.
Abstract not provided.
Incipient melting is a phenomenon that can occur in aluminum alloys where solute rich areas, such as grain boundaries, can melt before the rest of the material; incipient melting can degrade mechanical and corrosion properties and is irreversible, resulting in material scrapping. After detecting indications of incipient melting as the cause of failure in 7075 aluminum alloy parts (AA7075), a study was launched to determine threshold temperature for incipient melting. Samples of AA7075 were solution annealed using temperatures ranging from 870-1090F. A hardness profile was developed to demonstrate the loss of mechanical properties through the progression of incipient melting. Additionally, Zeiss software Zen Core Intellesis was utilized to more accurately quantify the changes in microstructural properties as AA7075 surpassed the onset of incipient melting. The results from this study were compared with previous AA7075 material that demonstrated incipient melting.