Publications

Results 92701–92800 of 96,771

Search results

Jump to search filters

Weapon foam accelerated aging using dynamic mechanical analysis

Rand, P.B.; Hance, B.G.

Rigid polyurethane foams are used for supports and as encapsulants for electronic assemblies in almost all weapon systems. Mechanical properties (storage, loss, rubbery, and glassy moduli) of three foams are being evaluated; the test scheme is illustrated. Aging tests are also being run on the long-term performance of foams being used in the Russian Fissile Material Container; there was no significant change in the glass transition temperature, glassy modulus, or rubbery modulus after one year of aging.

More Details

A comparison of on-axis and off-axis heliostat alignment strategies

Jones, S.A.

Heliostat installation and alignment costs will be an important element in future solar power tower projects. The predicted annual performances of on- and-off axis strategies are compared for 95 m{sup 2} flat-glass heliostats and an external, molten-salt receiver. Actual approaches to heliostat alignment that have been used in the past are briefly discussed, and relative strengths and limitations are noted. The optimal approach can vary with the application.

More Details

An interative, probabilistic environmental decision analysis approach

Webb, Erik K.

The framework is versatile and the generalized approach has worked well for a suite of evaluations or as a foundation for evaluation tools including developing the SEDSS computer software system for evaluating site safety for EPA Superfund problems, NRC Low-Level Nuclear Waste facility siting, and UMTRA site remediation decisions; iteration through the performance assessment of the Greater Confinement Disposal Facility; and optimizing data collection for DNAPL problems. In particular, the SEDSS computer system makes a portion of these tools accessible for broad scale application. Development of both details of the process and computer tools to support individual steps continues.

More Details

Diamond and diamond-like carbon films for advanced electronic applications

Siegal, Michael P.

Aim of this laboratory-directed research and development (LDRD) project was to develop diamond and/or diamond-like carbon (DLC) films for electronic applications. Quality of diamond and DLC films grown by chemical vapor deposition (CVD) is not adequate for electronic applications. Nucleation of diamond grains during growth typically results in coarse films that must be very thick in order to be physically continuous. DLC films grown by CVD are heavily hydrogenated and are stable to temperatures {le} 400{degrees}C. However, diamond and DLC`s exceptional electronic properties make them candidates for integration into a variety of microelectronic structures. This work studied new techniques for the growth of both materials. Template layers have been developed for the growth of CVD diamond films resulting in a significantly higher nucleation density on unscratched or unprepared Si surfaces. Hydrogen-free DLC with temperature stability {le} 800{degrees}C has been developed using energetic growth methods such as high-energy pulsed-laser deposition. Applications with the largest system impact include electron-emitting materials for flat-panel displays, dielectrics for interconnects, diffusion barriers, encapsulants, and nonvolatile memories, and tribological coatings that reduce wear and friction in integrated micro-electro-mechanical devices.

More Details

Simulation-based computation of dose to humans in radiological environments

Davis, K.R.

The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

More Details

Investigation of RADTRAN Stop Model input parameters for truck stops

Griego, N.R.

RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops.

More Details

Expected residence time model

Smith, J.D.; Neuhauser, K.S.; Kanipe, F.L.

The Transportation Technology Department of Sandia National Laboratories develops analytical and computational tools for the US Department of Energy to assess the radiological consequences and risks from the transportation of radioactive materials by all modes. When large quantities of materials are to be transported movements may occur over an extended period of time in what is collectively referred as a ``shipping campaign``. Since the routes over which the shipments occur often remain the same, cumulative exposure to individuals inhabiting the population zones adjacent to the transport links must be estimated. However, individuals do not remain in the same residences throughout their lifetimes and, in fact, move quite often. To appropriately allocate exposures among populations over extended periods of time, perhaps years, requires a model that accounts for three population categories; (1) the original populations residing in the areas adjacent to the transport links, (2) individuals moving out and (3) individuals moving into residences in the designated areas. The model described here accounts for these conditions and will be incorporated as a user option in the RADTRAN computer code for transportation consequence and risk analysis (Reference 1). RADTRAN is a computer code for estimating the consequences and risks associated with the transport of radioactive materials.

More Details

Developing electronic textbooks

Ratner, J.A.

This paper discusses a new approach to the development of engineering education materials. The ``Electronic Textbook`` represents the logical progression of the printed textbook in the Electronic Age. The concept behind this approach is simple; to place all of the information contained in a textbook in electronic form. Currently, paper texts exist on the market with electronic supplements, however, this Electronic Textbook would include supplements fully integrated in the whole text. The computer hardware and software needed to make this advance possible have existed for nearly ten years, and they have been readily available to engineering educators and students for over three years. Computer based ``tools`` in engineering textbooks as are prevalent today range from computer styled algorithms and code snippets, to fully developed software applications with graphical user interfaces on floppy disks attached to the back covers of books. The next logical step in publishing is to dispense with the paper book entirely, by distributing textbooks via electronic media such as CD-ROM. Electronic Textbooks use the full range of multi-media technologies in the learning and teaching process including video clips, computer animations and fully functional numerical engines as integral parts of the textbook material. This is very appealing since interactive media provide teaching tools that appeal to divergent learning styles. The advantages of Electronic Textbooks lead to several challenges. Special attention must be paid to the development of user interfaces; navigation is of particular importance when non- linear exploration is encouraged. These issues are being addressed at the Sandia National Laboratories by an electronic documentation development team. This team includes experts in engineering, in human factors, and in computer hardware and software development. Guidelines for the development of electronic textbooks based on the experiences of this team are provided.

More Details

A range algorithm for ground penetrating radar

Caffey, Thurlow W.

A range-to-target algorithm for application to targets which exhibit a crude hyperbolic wiggle trace is described. The current practice is to use the apex time of the hyperbolic response together with an estimate of the propagation velocity to furnish the range. This new algorithm minimizes a difference function over a velocity search interval to provide the range. Examples for a variety of media, targets, range, and operating frequency are given for both simulated data and actual field data provided by others. Generally, the range is within 5% of the true value when known, or is consistent with values furnished by others.

More Details

Ion exchange performance of commercial crystalline silicotitanates for cesium removal

Miller, James E.

A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A&M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na{sup +}. The materials also showed excellent chemical and radiation stability. Together, the high selectivity and stability of the CSTs made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia National Laboratories and UOP have teamed under a Cooperative Research and Development Agreement (CRADA) to develop CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by the Sandia and Texas A&M team consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications.

More Details

A new parallel algorithm for contact detection in finite element methods

Hendrickson, Bruce A.

In finite-element, transient dynamics simulations, physical objects are typically modeled as Lagrangian meshes because the meshes can move and deform with the objects as they undergo stress. In many simulations, such as computations of impacts or explosions, portions of the deforming mesh come in contact with each other as the simulation progresses. These contacts must be detected and the forces they impart to the mesh must be computed at each timestep to accurately capture the physics of interest. While the finite-element portion of these computations is readily parallelized, the contact detection problem is difficult to implement efficiently on parallel computers and has been a bottleneck to achieving high performance on large parallel machines. In this paper we describe a new parallel algorithm for detecting contacts. Our approach differs from previous work in that we use two different parallel decompositions, a static one for the finite element analysis and dynamic one for contact detection. We present results for this algorithm in a parallel version of the transient dynamics code PRONTO-3D running on a large Intel Paragon.

More Details

Evaluation of the tratment of metal-EDTA complexes using Ti0{sub 2} photocatalysis

Prairie, Michael R.

This study has demonstrated the feasibility of TiO{sub 2} photocatalysis to treat EDTA and several metal-EDTA complexes that can be found in industrial wastewaters. For the EDTA complexes of metals capable of photodeposition, such as Cu and Pb, certain reaction conditions were shown to facilitate the simultaneous complex degradation and photodeposition of these metals onto the catalyst. With metals that do not easily photodeposit, such as Ni and Cd, it is shown that the complex degradation is still facilitated, and can enhance other metals removal processes after photocatalytic treatment. Because the treatment of these metal-EDTA complexes typically requires special measures, there may exist situations where TiO{sub 2} photocatalysis could actually be the preferred method of treatment. However, its use should be compared economically to other more established advanced oxidation technologies. This necessity is demonstrated in the economic comparison to ozone treatment for EDTA degradation alone, where ozone treatment appears to be the clear choice in this application.

More Details

A general method for the efficient selection of sampling locations for problems in environmental restoration

Rutherford, Brian M.

Problems in environmental restoration that involve detecting or monitoring contamination or site characterization often benefit from procedures that help select sampling or drilling locations for obtaining meaningful data that support the analysis. One example of this type of procedure is a spatial sampling program that will ``automatically`` (based on the implementation of a computer algorithm) guide an iterative investigation through the process of site characterization at a minimal cost to determine appropriate remediation activities. In order to be effective, such a procedure should translate site and modeling uncertainties into terms that facilitate comparison with regulations and should also provide a methodology that will lead to an efficient sampling plan over the course of the analysis. In this paper, a general framework is given that can accomplish these objectives and can be applied to a wide range of environmental restoration applications. The methodology is illustrated using an example where soil samples support the characterization of a chemical waste landfill area.

More Details

High microwave power ECR etching of III-V semiconductors in CH{sub 4}/H{sub 2}/Ar

Shul, Randy J.

Etch rates up to 7000{angstrom}/min for InP and 3500{angstrom}/min for GaAs are obtained for high microwave power (1000W) CH{sub 4}/H{sub 2}/Ar Electron Cyclotron Resonance plasma etching. Preferential loss of the group V element leads to nonstoichiometric, unacceptably rough surfaces on In-based binary semiconductors at microwave powers {ge}400W, regardless of plasma composition. Both Ga- and Al-based materials retain smooth, stoichiometric surfaces even at I000W, but the rates are still much slower than for C1{sub 2} plasma chemistries. The results suggest that CH{sub 4}/H{sub 2} plasmas are not well suited to ECR systems operating at high powers.

More Details

Simulation of nonlinear strutures with artificial neural networks

Paez, Thomas L.

Structural system simulation is important in analysis, design, testing, control, and other areas, but it is particularly difficult when the system under consideration is nonlinear. Artificial neural networks offer a useful tool for the modeling of nonlinear systems, however, such modeling may be inefficient or insufficiently accurate when the system under consideration is complex. This paper shows that there are several transformations that can be used to uncouple and simplify the components of motion of a complex nonlinear system, thereby making its modeling and simulation a much simpler problem. A numerical example is also presented.

More Details

Drill pipe protector development

Thomerson, C.; Kenne, R.; Wemple, R.P.

The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

More Details

X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

Sanford, Thomas W.

Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

More Details

Final report for the protocol extensions for ATM Security Laboratory Directed Research and Development Project

Tarman, Thomas D.

This is the summary report for the Protocol Extensions for Asynchronous Transfer Mode project, funded under Sandia`s Laboratory Directed Research and Development program. During this one-year effort, techniques were examined for integrating security enhancements within standard ATM protocols, and mechanisms were developed to validate these techniques and to provide a basic set of ATM security assurances. Based on our experience during this project, recommendations were presented to the ATM Forum (a world-wide consortium of ATM product developers, service providers, and users) to assist with the development of security-related enhancements to their ATM specifications. As a result of this project, Sandia has taken a leading role in the formation of the ATM Forum`s Security Working Group, and has gained valuable alliances and leading-edge experience with emerging ATM security technologies and protocols.

More Details

Shock compression profiles in ceramics

Grady, D.E.; Moody, R.L.

An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

More Details

Scoping analysis of toxic metal performance in DOE low-level waste disposal facilities

Waters, Robert D.

This study provides a scoping safety assessment for disposal of toxic metals contained in Department of Energy (DOE) mixed low-level waste (MLLW) at six DOE sites that currently have low-level waste (LLW) disposal facilities--Savannah River Site, Oak Ridge Reservation, Los Alamos National Laboratory, Hanford Reservation, Nevada Test Site, and Idaho National Engineering Laboratory. The study has focused on the groundwater contaminant pathway, which is considered to be the dominant human exposure pathway from shallow land MLLW disposal. A simple and conservative transport analysis has been performed using site hydrological data to calculate site-specific ``permissible`` concentrations of toxic metals in grout-immobilized waste. These concentrations are calculated such that, when toxic metals are leached from the disposal facility by infiltrating water and attenuated in local ground-water system the toxic metal concentrations in groundwater below the disposal facility do not exceed the Maximum Contaminant Levels as stated in the National Primary Drinking Water Regulation. The analysis shows that and sites allow about I00 times higher toxic metal concentrations in stabilized waste leachate than humid sites. From the limited available data on toxic metal concentrations in DOE MLLW, a margin of protection appears to exist in most cases when stabilized wastes containing toxic metals are disposed of at the DOE sites under analysis. Possible exceptions to this conclusion are arsenic, chromium selenium, and mercury when disposed of at some humid sites such as the Oak Ridge Reservation. This analysis also demonstrates that the US Environmental Protection Agency`s prescriptive regulatory approach that defines rigid waste treatment standards does not inherently account for the variety of disposal environments encountered nationwide and may result in either underprotection of groundwater resources (at humid sites) or an excessive margin of protection (at and sites).

More Details

A modular approach to multi-robot control

Anderson, Robert J.

The ability to rapidly command multi-robot behavior is crucial for the acceptance and effective utilization of multiple robot control. To achieve this, a modular- multiple robot control solution is being, pursued using the SMART modular control architecture. This paper investigates the development of a new dual-arm kinematics module (DUAL-KLN) which allows multiple robots, previously controlled as separate stand-alone systems, to be controlled as a coordinated multi-robot system. The DUAL-KIN module maps velocity and force information from a center point of interest on a grasped object to the tool centers of each grasping robot. Three-port network equations are used and mapped into the scattering operator domain in a computationally efficient form. Application examples of the DUAL-KLN module in multi-robot coordinated control are given.

More Details

The use of a beryllium Hopkinson bar to characterize a piezoresistive accelerometer in shock environments

Bateman, Vesta I.

The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. In this paper, the beryllium Hopkinson bar configuration with a laser doppler vibrometer as the reference measurement is described. The in-axis performance of the piezoresistive accelerometer for frequencies of dc-50 kHz and shock magnitudes of up to 70,000 g as determined from measurements with a beryllium Hopkinson bar are presented. Preliminary results of characterizations of the accelerometers subjected to cross-axis shocks in a split beryllium Hopkinson bar configuration are presented.

More Details

Advanced packaging technology for high frequency photonic applications

Armendariz, Marcelino A.

An advanced packaging concept has been developed for optical devices. This concept allows multiple fibers to be coupled to photonic integrated circuits, with no fiber penetration of the package walls. The principles used to accomplish this concept involves a second-order grating to couple light in or out of the photonic circuit, and a binary optic lens which receives this light and focuses it into a single-mode optical fiber. Design, fabrication and electrical/optical measurements of this packaging concept are described.

More Details

Adaptive external torque estimation by means of tracking a Lyapunov function

Schaub, H.; Junkins, J.L.; Robinett, R.D.

A real-time method is presented to adoptively estimate three-dimensional unmodeled external torques acting on a spacecraft. This is accomplished by forcing the tracking error dynamics to follow the Lyapunov function underlying the feedback control law. For the case where the external torque is constant, the tracking error dynamics are shown to converge asypmtotically. The methodology applies not only to the control law used in this paper, but can also be applied to most Lyapunov derived feedback control laws. The adaptive external torque estimation is very robust in the presence of measurement noise, since a numerical integration is used instead of a numerical differentiation. Spacecraft modeling errors, such as in the inertia matrix, are also compensated for by this method. Several examples illustrate the practical significance of these ideas.

More Details

The anticyclone: A device for nonimpact particle separation

Torczynski, J.R.

It is often desirable to separate particles from a particle-laden fluid stream. This is typically accomplished by passing the stream through a filter, an impactor, or a cyclone. In each of these devices, particles encounter obstacles in the flow path (i.e. filter material, the impaction surface, the cyclone side wall). However, in some applications, it is desirable to prevent particles from impinging on solid surfaces. For example, particle interaction with a solid surface may contaminate the surface, modify the particles via mechanical or chemical processes, or adversely affect the surface via material modification or heat transfer. In such situations, it is still possible to separate particles from the particle-laden flow stream by transferring them to another adjacent flow stream. This transfer of particles from one flow stream to another is termed nonimpact particle separation. One type of device that separates particles from a flow stream by nonimpact particle separation is the anticyclone. In contradistinction to a cyclone, the particle-laden flow is deflected from its original direction by a wall that curves away from the original flow direction, rather than into it. The computational fluid dynamics code FIDAP (Fluid Dynamics International) is used to perform two-dimensional fluid-flow and particle-motion calculations for a representative device geometry. These calculations indicate that the anticyclone geometry examined accomplishes nonimpact particle separation, as expected. Flow patterns and overall particle-separation characteristics are found to be fairly insensitive to Reynolds number for values above 100 regardless of whether the flow is laminar or turbulent. An approximate analytical relation describing anticyclone nonimpact particle separation is developed and validated by comparison to the numerical simulations. The additional information required to design useful devices employing nonimpact particle separation is outlined.

More Details

Three-dimensional electromagnetic modeling and inversion on massively parallel computers

Newman, G.A.

This report has demonstrated techniques that can be used to construct solutions to the 3-D electromagnetic inverse problem using full wave equation modeling. To this point great progress has been made in developing an inverse solution using the method of conjugate gradients which employs a 3-D finite difference solver to construct model sensitivities and predicted data. The forward modeling code has been developed to incorporate absorbing boundary conditions for high frequency solutions (radar), as well as complex electrical properties, including electrical conductivity, dielectric permittivity and magnetic permeability. In addition both forward and inverse codes have been ported to a massively parallel computer architecture which allows for more realistic solutions that can be achieved with serial machines. While the inversion code has been demonstrated on field data collected at the Richmond field site, techniques for appraising the quality of the reconstructions still need to be developed. Here it is suggested that rather than employing direct matrix inversion to construct the model covariance matrix which would be impossible because of the size of the problem, one can linearize about the 3-D model achieved in the inverse and use Monte-Carlo simulations to construct it. Using these appraisal and construction tools, it is now necessary to demonstrate 3-D inversion for a variety of EM data sets that span the frequency range from induction sounding to radar: below 100 kHz to 100 MHz. Appraised 3-D images of the earth`s electrical properties can provide researchers opportunities to infer the flow paths, flow rates and perhaps the chemistry of fluids in geologic mediums. It also offers a means to study the frequency dependence behavior of the properties in situ. This is of significant relevance to the Department of Energy, paramount to characterizing and monitoring of environmental waste sites and oil and gas exploration.

More Details

A phenomenological finite element model of stereolithography processing

Chambers, Robert S.

In the stereolithography process, three dimensional parts are built layer by layer using a laser to selectively cure slices of a photocurable resin, one on top of another. As the laser spot passes over the surface of the resin, the ensuing chemical reaction causes the resin to shrink and stiffen during solidification. When laser paths cross or when new layers are cured on top of existing layers, residual stresses are generated as the cure shrinkage of the freshly gelled resin is constrained by the adjoining previously-cured material. These internal stresses can cause curling in the compliant material. A capability for performing finite element analyses of the stereolithography process has been developed. Although no attempt has been made to incorporate all the physics of the process, a numerical platform suitable for such development has been established. A methodology and code architecture have been structured to allow finite elements to be birthed (activated) according to a prescribed order mimicking the procedure by which a laser is used to cure and build-up surface layers of resin to construct a three dimensional geometry. In its present form, the finite element code incorporates a simple phenomenological viscoelastic material model of solidification that is based on the shrinkage and relaxation observed following isolated, uncoupled laser exposures. The phenomenological material model has been used to analyze the curl in a simple cantilever beam and to make qualitative distinctions between two contrived build styles.

More Details

Utility battery storage systems. Program report for FY95

Butler, Paul C.

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

More Details

Network modeling and an evaluation of a CD proposed ISMS

Claassen, J.P.

This report briefly describes the improvements and corrections made to a seismic network performance modeling code called NetSim. After expanding its supporting database, the modified code was used to predict the detection and location performances of an International Seismic Monitoring System (ISMS) proposed early in 1995 by the Group of Scientific Experts (GSE) supporting the Comprehensive Test Ban Treaty (CTBT) negotiators. The performance estimates indicated that the primary network achieves or exceeds the GSE goal of detecting a fully coupled 1kiloton nuclear shot contained in consolidated rock anywhere on the earth. It was also shown that without calibrated regional location models, the primary network alone cannot achieve the GSE location accuracy requirement of 1000 square kilometers at the detection threshold of the primary network, but with the help of 67 auxiliary stations that goal can be achieved in the northern hemisphere. Once the regional location models become better calibrated, the predictions based on these models indicated that the primary network should be able to realize the GSE requirement throughout much of the world. However, the location accuracy requirement is not realized in Central America, on the oceanic islands, on continental margins in the southern hemisphere, and in Antarctica. The introduction of the 67 auxiliary stations into the calibrated network primarily broadens the regions already having good location accuracies. The location performance estimates may be regarded as conservative since the S-wave arrivals were not included A comprehensive set of scenarios are illustrated in this effort to better understand various influences on network performance.

More Details

Defense programs business practices re-engineering QFD exercise

Halbleib, Laura L.

The end of the cold war has resulted in many changes for the Nuclear Weapons Complex (NWC). We now work in a smaller complex, with reduced resources, a smaller stockpile, and no new phase 3 weapons development programs. This new environment demands that we re-evaluate the way we design and produce nuclear weapons. The Defense Program (DP) Business Practices Re-engineering activity was initiated to improve the design and production efficiency of the DP Sector. The activity had six goals: (1) to identify DP business practices that are exercised by the Product Realization Process (PRP); (2) to determine the impact (positive, negative, or none) of these practices on defined, prioritized customer criteria; (3) to identify business practices that are candidates for elimination or re-engineering; (4) to select two or three business practices for re-engineering; (5) to re-engineer the selected business practices; and (6) to exercise the re-engineered practices on three pilot development projects. Business practices include technical and well as administrative procedures that are exercised by the PRP. A QFD exercise was performed to address (1)-(4). The customer that identified, defined, and prioritized the criteria to rate the business practices was the Block Change Advisory Group. Five criteria were identified: cycle time, flexibility, cost, product performance/quality, and best practices. Forty-nine business practices were identified and rated per the criteria. From this analysis, the group made preliminary recommendations as to which practices would be addressed in the re-engineering activity. Sixteen practices will be addressed in the re-engineering activity. These practices will then be piloted on three projects: (1) the Electronic Component Assembly (ECA)/Radar Project, (2) the B61 Mod 11, and (3) Warhead Protection Program (WPP).

More Details

Ion energy and angular distributions in inductively coupled Argon RF discharges

Woodworth, Joseph R.

We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10{sup 12}/cm{sup 3} electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased.

More Details

Simulation of slide-coating flows using a fixed grid and a volume-of- fluid front-tracking technique: Startup and bead breakup

Chen, Ken S.

Slide coating flow is a workhorse process for manufacturing precision film-coating products. Properly starting up a slide coating process is very important in reducing wastage during startup and ensuring that the process operates within the desired `coating window.` A two-phase flow analysis of slide-coating startup was performed by Palmquist and Scriven (1994) using Galerkin`s method with finite-element basis functions and an elliptic mesh generation scheme. As reported by Chen (1992) from flow visualization experiments, a continuously coated liquid film breaks up into rivulets, which are coating stripes with dry lanes in between, when the coated film becomes thinner and thinner due to either the increase in substrate speed or the reduction in pre-metered feed-liquid pump speed. It was observed that the coated-film breakup process originated from the coating bead, thus the name of bead breakup. Understanding the bead-breakup phenomena and elucidating mechanisms involved will provide guidance for manufacturing thinner coating, an industrial trend for better product performance. In this paper we present simulation results of slide-coating flows obtained from a computational method capable of describing arbitrary, three-dimensional and time-dependent deformations. The method, which is available in a commercial code, uses a fixed grid through which fluid interfaces are tracked by a Volume-of-Fluid technique (Hirt and Nichols, 1981). Surface tension, wall adhesion, and viscous stresses are fully accounted for in our analysis. We illustrate our computational approach by application to startup and the bead-breakup problems. As will be shown, for rapid processes our approach offers the computational efficiency and robustness that are difficult o achieve in conventional finite-element-based methods.

More Details

Site selection study for Sandia National Laboratories/New Mexico as an alternative site for the National Ignition Facility

Wheeler, Timothy A.

The Department of Energy (DOE) proposes to construct and operate the National Ignition Facility (NIF) in support of the Stockpile Stewardship and Management (SSM) Programmatic Environmental impact Statement (PEIS). The National Environmental Policy Act requires the DOE to look at alternative sites for the NIF. The SSM PEIS will evaluate four alternative locations for the NIF. This study documents the process and results of a site selection study for a preferred site for the NIF at SNL/NM. The NIF research objectives are to provide the world`s most powerful laser systems to be used in ignition of fusion fuel and energy gain to perform high energy density and radiation effects experiments in support of the DOE`s national security, energy, and basic science research mission. The most immediate application of the NIF will be to provide nuclear-weapon-related physics data, since many phenomena occurring on the laboratory scale are similar to those that occur in weapons. The NIF may also provide an important capability for weapons effects simulation. The NIF is designed to achieve propagating fusion bum and modest energy gain for development as a source of civilian energy.

More Details

Tritium in surface soils at the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories, New Mexico

Peace, J.L.; Goering, T.J.; Mcvey, M.D.

The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessment and remediation of the Mixed Waste Landfill in Technical Area 3. The Mixed Waste Landfill is an inactive, low-level radioactive and mixed waste disposal site. The Mixed Waste Landfill was subject to an extensive surface soil sampling program for tritium in July 1993. Results indicate that surface soils at the landfill contain significant levels of tritium. The classified area of the landfill contains the highest levels of tritium. Results also indicate that tritium has migrated beyond the fenced boundary of the classified area of the landfill.

More Details

The Technology Information Environment with Industry{trademark} system description

Detry, Richard J.

The Technology Information Environment with Industry (TIE-In{trademark}) provides users with controlled access to distributed laboratory resources that are packaged in intelligent user interfaces. These interfaces help users access resources without requiring the user to have technical or computer expertise. TIE-In utilizes existing, proven technologies such as the Kerberos authentication system, X-Windows, and UNIX sockets. A Front End System (FES) authenticates users and allows them to register for resources and subsequently access them. The FES also stores status and accounting information, and provides an automated method for the resource owners to recover costs from users. The resources available through TIE-In are typically laboratory-developed applications that are used to help design, analyze, and test components in the nation`s nuclear stockpile. Many of these applications can also be used by US companies for non-weapons-related work. TIE-In allows these industry partners to obtain laboratory-developed technical solutions without requiring them to duplicate the technical resources (people, hardware, and software) at Sandia.

More Details

Development of structural health monitoring techniques using dynamics testing

James III, G.H.

Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

More Details

University Prosperity Game. Final report

Boyack, Kevin W.

Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents the University Prosperity Game conducted under the sponsorship of the Anderson Schools of Management at the University of New Mexico. This Prosperity Game was initially designed for the roadmap making effort of the National Electronics Manufacturing Initiative (NEMI) of the Electronics Subcommittee of the Civilian Industrial Technology Committee under the aegis of the National Science and Technology Council. The game was modified to support course material in MGT 508, Ethical, Political, and Social Environment of Business. Thirty-five students participated as role players. In this educational context the game`s main objectives were to: (1) introduce and teach global competitiveness and business cultures in an experiential classroom setting; (2) explore ethical, political, and social issues and address them in the context of global markets and competition; and (3) obtain non-government views regarding the technical and non-technical (i.e., policy) issues developed in the NEMI roadmap-making endeavor. The negotiations and agreements made during the game, along with the student journals detailing the players feelings and reactions to the gaming experience, provide valuable insight into the benefits of simulation as an advanced learning tool in higher education.

More Details

EIGER: A new generation of computational electromagnetics tools

Johnson, William Arthur.

The EIGER project (Electromagnetic Interactions GenERalized) endeavors to bring the next generation of spectral domain electromagnetic analysis tools to maturity and to cast them in a general form which is amenable to a variety of applications. The tools are written in Fortran 90 and with an object oriented philosophy to yield a package that is easily ported to a variety of platforms, simply maintained, and above all efficiently modified to address wide ranging applications. The modular development style and the choice of Fortran 90 is also driven by the desire to run efficiently on existing high performance computer platforms and to remain flexible for new architectures that are anticipated. The electromagnetic tool box consists of extremely accurate physics models for 2D and 3D electromagnetic scattering, radiation, and penetration problems. The models include surface and volume formulations for conductors and complex materials. In addition, realistic excitations and symmetries are incorporated, as well as, complex environments through the use of Green`s functions.

More Details

Navy explosive ordnance disposal project: Optical ordnance system development. Final report

Merson, John A.

An optical ordnance firing system consisting of a portable hand held solid state rod laser and an optically ignited detonator has been developed for use in explosive ordnance disposal (EOD) activities. Solid state rod laser systems designed to have an output of 150 mJ in a 500 microsecond pulse have been produced and evaluated. A laser ignited detonator containing no primary explosives has been designed and fabricated. The detonator has the same functional output as an electrically fired blasting cap. The optical ordnance firing system has demonstrated the ability to reliably detonate Comp C-4 through 1000 meters of optical fiber.

More Details

Lifetime predictive capabilities for materials in the enduring stockpile

Koeck, D.C.

Although materials understanding and modeling is not currently advanced to the point of failure prediction for most critical areas for stockpile components, research should continue to extend the knowledge base and enable science based choices for future programs or upgrades. Several critical areas are lacking for a science-based lifetime extension of the current stockpile. Hermeticity is critical for many components but modeling and predicative capabilities are limited in these areas. PETN is prevalent throughout the stockpile but modeling and predictive capability for autocatalysis and non-hermetic lifetimes is limited. Corrosion is a frequently observed age-related finding from the historical stockpile but the ability to predict the initiation of corrosion is limited. Advanced electronics are in some current weapons types and will most likely be a part of any retrofits and upgrades in the future. Understanding of stress voiding and electromigration in microelectronics is limited and predictions are not yet available. Polymeric materials are prevalent throughout the stockpile and temperature dependent response mass transport properties are not well understood. Modeling and predictive capabilities for polymeric materials are limited.

More Details

Lithium: Thionyl chloride battery state-of-the-art assessment

Eisenmann, E.T.

Models of the performance of primary Li/SOCl{sub 2} cells can provide for realistic comparisons between technical information from different sources, and set standards that electronic circuit designers may refer to in the generation of high-quality products. Data from various investigators were used to derive mathematical- statistical relationships with physical design features (e.g. size and materials), operating parameters (e.g. current and temperature) and storage conditions (time and temperature). These efforts were substantially promoted by normalization procedures. For example, current loads were converted into current densities, or if appropriate, into current per unit cathode volume. Similarly, cell capacities were standardized with the maximum values observed at low current and also with respect to the cathode volume. Particular emphasis was placed on evaluations of voltage-delay, cell capacity and self-discharge, for which several equations were established. In spite of a considerable expenditure in time to find high-quality datasets, the reality is that all of the reviewed studies are flawed in one way or another. Specifically, all datasets are afflicted with sizable experimental errors and the precision of the regression equations is much lower than is deemed necessary for a universal model of the lithium thionyl chloride cell. Each of the equations has some definite truth content, but is generally incapable of bridging the gap between different studies. The basic failure to come up with a unifying model for Li/SOCl{sub 2} batteries leaves only one benefit of the present analysis, namely to provide guidance for future investigations. Several recommendations are made based on the insight gained during the search for good data in the relevant literature.

More Details

HALFTON: A high-explosive containment experiment in partially saturated tuff

Smith, C.W.

The HALFTON experiment explored the phenomena of high explosive detonations in 90% water-saturated tuff rock. The explosive source was a 453 kg TNT sphere which was grouted in a drift in G Tunnel, Nevada Test Site. Active gages measured stresses and motions in the range of 1.3 to 5.3 cavity radii and showed a peak stress decay as range raised to the {minus}2.77 power. Additional stress gages were fielded to investigate the gage inclusion problem.

More Details

Seismic imaging on massively parallel computers

Ober, Curtis C.

Fast, accurate imaging of complex, oil-bearing geologies, such as overthrusts and salt domes, is the key to reducing the costs of domestic oil and gas exploration. Geophysicists say that the known oil reserves in the Gulf of Mexico could be significantly increased if accurate seismic imaging beneath salt domes was possible. A range of techniques exist for imaging these regions, but the highly accurate techniques involve the solution of the wave equation and are characterized by large data sets and large computational demands. Massively parallel computers can provide the computational power for these highly accurate imaging techniques. A brief introduction to seismic processing will be presented, and the implementation of a seismic-imaging code for distributed memory computers will be discussed. The portable code, Salvo, performs a wave equation-based, 3-D, prestack, depth imaging and currently runs on the Intel Paragon and the Cray T3D. It used MPI for portability, and has sustained 22 Mflops/sec/proc (compiled FORTRAN) on the Intel Paragon.

More Details

Developmental assessment of IFCI 6.0

Reed, Alfred W.

Version 6.0 of the IFCI code is being assessed by comparing predictions against the results of several experiments. Simulations of the first two of these experiments, MAGICO-701 and MIXA-6, have been completed with a reasonable level of success. Agreement with the MAGICO-701 experiment was good but was limited somewhat by the inherent problem of numerical diffusion. Results of the MIXA-6 calculations were comparable to those of CHYMES, but clearly suggested the need for an inter-cell radiation transport model in IFCI.

More Details

Data report on the Waste Isolation Pilot Plant Small-Scale Seal Performance Test, Series F grouting experiment

Ahrens, E.H.

SSSPT-F was designed to evaluate sealing materials at WIPP. It demonstrated: (1) the ability to practically and consistently produce ultrafine cementitious grout at the grouting site, (2) successful, consistent, and efficient injection and permeation of the grout into fractured rock at the repository horizon, (3) ability of the grout to penetrate and seal microfractures, (4) procedures and equipment used to inject the grout. Also techniques to assess the effectiveness of the grout in reducing the gas transmissivity of the fractured rock were evaluated. These included gas-flow/tracer testing, post-grout coring, pre- and post-grout downhole televiewer logging, slab displacement measurements, and increased loading on jacks during grout injection. Pre- and post-grout diamond drill core was obtained for use in ongoing evaluations of grouting effectiveness, degradation, and compatibility. Diamond drill equipment invented for this test successfully prevented drill cuttings from plugging fractures in grout injection holes.

More Details

The components of geostatistical simulation

Rutherford, Brian M.

There are many approaches to geostatistical simulation that can be used to generate realizations of random fields. These approaches differ fundamentally in a number of ways. First, each approach is inherently different and will produce fields with different statistical and geostatistical properties. Second, the approaches differ with respect to the choice of the features of the region that are to be modeled, and how closely the generated realizations reproduce these features. Some fluctuation in the statistical and geostatistical properties of different realizations of the same random field are natural and desirable, but the proper amount of deviation is an open question. Finally the approaches differ in how the conditioning information is incorporated. Depending on the source of randomness and the uncertainty in the given data, direct conditioning of realizations is not always desirable. In this paper, we discuss and illustrate these differences in order to emphasize the importance of these components in geostatistical simulation.

More Details

A high-resolution, four-band SAR testbed with real-time image formation

Walker, Bruce C.

This paper describes the Twin-Otter SAR Testbed developed at Sandia National Laboratories. This SAR is a flexible, adaptable testbed capable of operation on four frequency bands: Ka, Ku, X, and VHF/UHF bands. The SAR features real-time image formation at fine resolution in spotlight and stripmap modes. High-quality images are formed in real time using the overlapped subaperture (OSA) image-formation and phase gradient autofocus (PGA) algorithms.

More Details

A case for avoiding security-enhanced HTTP tools to improve security for Web-based applications

Wood, B.

This paper describes some of the general weaknesses of the current popular Hypertext Transmission Protocol (HTTP) security standards and products in an effort to show that these standards are not appealing for many applications. The author will then show how one can treat HTTP browsers and servers as untrusted elements in the network so that one can rely on other mechanisms to achieve better overall security than can be attained through today`s security-enhanced HTTP tools.

More Details

A new concept for very low energy detonators and torches

Bickes Jr., R.W.; Grubelich, M.C.; Romero, J.A.; Staley, D.J.; Buss, R.J.; Ward, P.P.; Erickson, K.L.

We deposited secondary explosive and multilayer thermite films directly onto semiconductor bridges (SCBs) and other substrates. Methods for the deposition of two thermite films (aluminum/copper oxide and magnesium/fluorocarbon polymer) were developed as part of this study and a new capability was obtained for depositing adherent films on any material, including Teflon and Gore-Tex. Our experimental program determined conditions for the SCB ignition of the deposited films, and with the aluminum/copper oxide film, we observed a lower threshold for ignition of a powder pressed against the bridge. We also looked at other ignition methods including lasers, spark discharges, primers and hot combustion gases.

More Details

Electrical test structures replicated in silicon-on-insulator material

Sniegowski, Jeffry J.

Measurements of the linewidths of submicrometer features made by different metrology techniques have frequently been characterized by differences of up to 90 nm. The purpose of the work reported here is to address the special difficulties that this phenomenon presents to the certification of reference materials for the calibration of linewidth-measurement instruments. Accordingly, a new test structure has been designed, fabricated, and undergone preliminary tests. Its distinguishing characteristics are assured cross-sectional profile geometries with known side-wall slopes, surface planarity, and compositional uniformity when it is formed in mono-crystalline material at selected orientations to the crystal lattice. To allow the extraction of electrical linewidth, the structure is replicated in a silicon film of uniform conductivity which is separated from the silicon substrate by a buried oxide layer. The utilization of a Silicon-On-Insulator (SKI) substrate further allows the selective removal of substrate material from local regions below the reference features, thus facilitating measurements by optical and electron-beam transmission microscopy. The combination of planar feature surfaces having known side-wall slopes is anticipated to eliminate factors which are believed to be responsible for methods divergence in linewidth measurements, a capability which is a prerequisite for reliable certification of the linewidths of features on reference materials.

More Details

A Monte Carlo procedure for the construction of complementary cumulative distribution functions for comparison with the EPA release limits for radioactive waste disposal

Risk Analysis

Shiver, A.W.

A Monte Carlo procedure for the construction of complementary cumulative distribution functions (CCDFs) for comparison with the U.S. Environmental Protection Agency (EPA) release limits for radioactive waste disposal (40 CFR 191, Subpart B) is described and illustrated with results from a recent performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP). The Monte Carlo procedure produces CCDF estimates similar to those obtained with importance sampling in several recent PAs for the WIPP. The advantages of the Monte Carlo procedure over importance sampling include increased resolution in the calculation of probabilities for complex scenarios involving drilling intrusions and better use of the necessarily limited number of mechanistic calculations that underlie CCDF construction.

More Details

Composition analysis of ECR-grown SiO2 and SiOxFy films

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Barbour, J.C.

Low dielectric constant insulating films, such as SiO2 and fluorine doped SiOx, are an important class of materials in semiconductor manufacturing. Evaluation of a new process to grow low temperature SiOxFy films using an electron cyclotron resonance plasma (ECR) was done. Ion beam analysis techniques were used to characterize the compositions of the insulating films and correlate this with their physical and electrical properties. Since Si, O, F and H are of primary interest in these films, three different techniques were utilized in order to get a more thorough analysis. 2.8 MeV He Rutherford Backscattering Spectrometery (RBS) revealed the Si and O content, but because of the low fluorine concentrations (2-10 at.%) RBS proved difficult for analysis of the F content. Instead, Nuclear Reaction Analysis (NRA), which used 872 keV protons in the 19F(p, αγ)16O reaction, was employed. Finally, 30 MeV Si Elastic Recoil Detection (ERD) was used to obtain the H concentration and supplement the O analysis. The dielectric constant decreased from ε = 4 to ε = 3.55 as the F concentration increased from 0 to 10%.

More Details

Fluorescent microthermal imaging - Theory and methodology for achieving high thermal resolution images

Microelectronic Engineering

Barton, Daniel L.

The fluorescent microthermal imaging technique (FMI) involves coating a sample surface with an inorganic-based thin film that, upon exposure to UV light, emits temperature-dependent fluorescence [1-8]. FMI offers the ability to create thermal maps of integrated circuits with a thermal resolution theoretically limited to 1 m°C and a spatial resolution which is diffraction-limited to 0.3 μm. Even though the fluorescent microthermal imaging (FMI) technique has been around for more than a decade, many factors that can significantly affect the thermal image quality have not been systematically studied and characterized. After a brief review of FMI theory, we will present our recent results demonstrating for the first time three important factors that have a dramatic impact on the thermal quality and sensitivity of FMI. First, the limitations imparted by photon shot noise and improvement in the signal-to-noise ratio realized through signal averaging will be discussed. Second, ultraviolet bleaching, an unavoidable problem with FMI as it currently is performed, will be characterized to identify ways to minimize its effect. Finally, the impact of film dilution on thermal sensitivity will be discussed.

More Details

Thermodynamic Modeling of Neptunium(V)-Acetate Complexation in Concentrated NaCl Media

Radiochimica Acta

Novak, C.F.

The complexation of neptunium(V), Np(V), with the acetate anion. Ac-, was measured in sodium chloride media to high concentration using an extraction technique. The data were interpreted using the thermodynamic formalism of Pitzer, which is valid to high electrolyte concentrations. A consistent model for the deprotonation constants of acetic acid in NaCl and NaClO4 media was developed. For the concentrations of acetate expected in a waste repository, only the neutral complex NpO2Ac(aq) was important in describing the interactions between the neptunyl ion and acetate. The thermodynamic stability constant β1010 for the reaction NpO2+ + Ac- ↔ NpO2Ac was calculated to be 1.46±0.22. This weak complexing behavior between the neptunyl ion and acetate indicates that acetate will not significantly enhance dissolved Np(V) concentrations in ground waters associated with nuclear waste repositories that may contain acetate.

More Details

Building business from technology: The Sandia experience

Proceedings of the Annual Hawaii International Conference on System Sciences

Traylor, L.

The paper describes New Ventures, a new initiative at Sandia National Laboratories that encourages the creation of new businesses based on laboratory technology as a timely, efficient means of technology transfer. Sandia's New Ventures program has shown that a dedicated effort can produce significant results. In the three years prior to this program's launch, just two ventures per year on average were created based on laboratory technology. By comparison, the New Ventures program has enabled 20 new ventures in its first nine months of full operation. Our experience has yielded several lessons: • most ventures result from Sandia entrepreneurs, from technologies that are well matched to market needs, and from laboratory projects that are ready for production; • Entrepreneurship issues are tremendously complex, requiring policy changes to reduce risk, manage intellectual property and licensing determinations, plan for potential conflicts of interest, and tailor other strategies; • A new ventures program must advocate these policy changes, assist entrepreneurs, put significant effort into matching outside companies to inside technologies, and identify lab projects ready for manufacture; • Connection to the local business community is vital to good commercialization matches and to the development of Sandia entrepreneurs; • Lab employees are far more interested in pursuing Technology Transfer Leaves of Absence than anticipated.

More Details

SNL-1, a highly selective inorganic crystalline ion exchange material for Sr2+ in acidic solutions

Materials Research Society Symposium - Proceedings

Nenoff, T.M.

A new inorganic ion exchange material, called SNL-1, has been prepared at Sandia National Laboratories. Development samples of SNL-1 have been determined to have high selectivity for the adsorption of Sr from highly acidic solutions (1 M HNO3). This paper presents results obtained for the material in batch ion exchange tests conducted at various solution pH values and in the presence of a number of competing cations. Results from a continuous flow column ion exchange experiment are also presented.

More Details

Synthesis of silicon nitride particles in pulsed radio frequency plasmas

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Buss, Richard J.

Silicon nitride (hydrogenated) particles are synthesized using a pulsed 13.56 MHz glow discharge. The plasma is modulated with a square-wave on/off cycle of varying period to study the growth kinetics. In situ laser light scattering and ex situ particle analysis are used to study the nucleation and growth. For SiH4/Ar and SiH4/NH3 plasmas, an initial very rapid growth phase is followed by slower growth, approaching the rate of thin film deposition on adjacent flat surfaces. The average particle size can be controlled in the 10-100 nm range by adjusting the plasma-on time. The size dispersion of the particles is large and is consistent with a process of continuous nucleation during the plasma-on period. The large polydispersity is also reported for silicon parties from silane and differs from that reported in other laboratories. The silicon nitride particle morphology is compared to that of silicon and silicon carbide particles generated by the same technique. Whereas Si particles appear as rough clusters of smaller subunits, the SiC particles are smooth spheres, and the Si3N4 particles are smooth but nonspherical. Postplasma oxidation kinetics of the particles are studied with Fourier transform infrared spectra and are consistent with a hydrolysis mechanism proposed in earlier work with continuous plasmas. Heat treatment of the powder in an ammonia atmosphere results in the elimination of hydrogen, rendering the silicon nitride resistant to atmospheric oxidation. © 1996 American Vacuum Society.

More Details

Experimental characterization of fire-induced response of rigid polyurethane foam

International SAMPE Symposium and Exhibition (Proceedings)

Chu, Tze Y.

Reported is the result of an experimental investigation of fire-induced response of a 96 kg/m3 closed cell rigid polyurethane foam. The specimen is 0.37 m in diameter, and 152 mm thick, placed in a cylindrical test vessel. The fire condition is simulated by heating the bottom of the test vessel to 1283 K using a radiant heat source. Real-time x-ray shows that the degradation process involves the progression of a charring front into the virgin material. The charred region has a regular and graded structure consisting of a packed bubble outer layer and successive layers of thin shells. The layer-to-layer permeability appears to be poor. There are indications that gas vents laterally. The shell-like structure might be the result of lateral venting. Although the foam degradation process is quite complicated, the in-depth temperature responses in the uncharred foam appear to be consistent with steady state ablation. The measured temperature responses are well represented by the exponential distribution for steady state ablation. An estimate of the thermal diffusivity of the foam is obtained from the ablation model. The experiment is part of a more comprehensive program to develop material response models of foams and encapsulants.

More Details

Interfacing materials models with fire field models

International SAMPE Symposium and Exhibition (Proceedings)

Nicolette, Vernon F.

For flame spread over solid materials, there has traditionally been a large technology gap between fundamental combustion research and the somewhat simplistic approaches used for practical, real-world applications. Recent advances in computational hardware and computational fluid dynamics (CFD)-based software have led to the development of fire field models. These models, when used in conjunction with material burning models, have the potential to bridge the gap between research and application by implementing physics-based engineering models in a transient, multi-dimensional tool. This paper discusses the coupling that is necessary between fire field models and burning material models for the simulation of solid material fires. Fire field models are capable of providing detailed information about the local fire environment. This information serves as an input to the solid material combustion submodel, which subsequently calculates the impact of the fire environment on the material. The response of the solid material (in terms of thermal response, decomposition, charring, and off-gassing) is then fed back into the field model as a source of mass, momentum and energy. The critical parameters which must be passed between the field model and the material burning model have been identified. Many computational issues must be addressed when developing such an interface. Some examples include the ability to track multiple fuels and species, local ignition criteria, and the need to use local grid refinement over the burning material of interest.

More Details

Fatigue reliability of wind turbine fleets: The effect of uncertainty on projected costs

Journal of Solar Energy Engineering, Transactions of the ASME

Veers, Paul S.

The cost of repairing or replacing failed components depends on the number and timing of failures. Although the total probability of individual component failure is sometimes interpreted as the percentage of components likely to fail, this perception is often far from correct. Different amounts of common versus independent uncertainty can cause different numbers of components to be at risk of failure. The FAROW tool for fatigue and reliability analysis of wind turbines makes it possible for the first time to conduct a detailed economic analysis of the effects of uncertainty on fleet costs. By dividing the uncertainty into common and independent parts, the percentage of components expected to fail in each year of operation is estimated. Costs are assigned to the failures and the yearly costs and present values are computed. If replacement cost is simply a constant multiple of the number of failures, the average, or expected cost is the same as would be calculated by multiplying by the probability of individual component failure. However, more complicated cost models require a breakdown of how many components are likely to fail. This breakdown enables the calculation of costs associated with various probability of occurrence levels, illustrating the variability in projected costs. Estimating how the numbers of components expected to fail evolves over time is also useful in calculating the present value of projected costs and in understanding the nature of the financial risk. © 1996 by ASME.

More Details

Use of probabilistic methods for analysis of cost and duration uncertainties in a decision analysis framework

High Level Radioactive Waste Management - Proceedings of the Annual International Conference

Boak, D.M.; Painton, L.

Probabilistic forecasting techniques can be used in the treatment of uncertainties in the cost and duration of programmatic alternatives on risk and performance assessment projects. Where significant uncertainties exist and where programmatic decisions must be made despite existing uncertainties, probabilistic techniques may yield important insights into decision options, especially when used in a decision analysis framework and when properly balanced with deterministic analyses. An example application of probabilistic forecasting is presented and described.

More Details

Electromagnetic modeling of subsurface 3D structures

International Geoscience and Remote Sensing Symposium (IGARSS)

Newman, G.A.

A 3D frequency domain electromagnetic numerical solution has been implemented for sensing buried structures in a lossy earth. Because some structures contain metal, it is necessary to treat them as very good conductors residing in a complicated lossy earth background. To model these scenarios and to avoid excessive gridding in the numerical solution, we assume the structures to be perfectly conducting, which forces the total electric field to zero within the conductor. This is accomplished by enforcing internal boundary conditions on the numerical grid. The numerical solution is based on a vector Helmholtz equation for the scattered electric fields, which is approximated using finite differences on a staggered grid. After finite differencing, a complex-symmetric matrix system of equations is assembled and preconditioned using Jocobi scaling before it is iteratively solved using the quasi-minimum residual (qmr) or bi-conjugate gradient (bicg) methods. For frequencies approaching the static limit (< 10 kHz), the scheme incorporates a static-divergence correction to accelerate solution convergence. This is accomplished by enforcing the divergence of the scattering current within the earth as well as the divergence of the scattered electric field in the air.

More Details

Building a modular robot control system using passivity and scattering theory

Proceedings - IEEE International Conference on Robotics and Automation

Anderson, Robert J.

This paper analyses the problems and presents solutions for building a modular robot control system. The approach requires modeling the entire robot system using multi-dimensional passive networks, breaking the system into subnetwork 'modules,' and then discretizing the subnetworks, or n-ports, in a passivity preserving fashion. The main difficulty is the existence of 'algebraic loops' in the discretized system. This problem is overcome by the use of scattering theory, whereby the inputs and outputs of the n-ports are mapped into wave variables before being discretized. By first segmenting the n-ports into nonlinear memoryless subnetworks and linear dynamic subnetworks and then discretizing using passivity preserving techniques such as Tustin's method, a complete modular robot control solution is obtained.

More Details

Design of an advanced fork system for assembly burnup measurement

High Level Radioactive Waste Management - Proceedings of the Annual International Conference

Ewing, Ronald I.

An Advanced Fork System has been designed to add gamma-ray collimation and spectroscopy capability to the Fork measurement system, which has been used for burnup verification at pressurized water reactors (PWR). The Advanced Fork System measures the neutron and gamma-ray yields and the energy spectrum of gamma-rays from spent fuel assemblies. A cadmium-zinc-telluride (CZT) crystal permits the identification of the radioactive isotopes of cesium (134 and 137). The cesium isotope concentrations, with proper calibration, can be used to determine the assembly burnup independent of reactor records, and to provide a measure of minimum cooling time. Tungsten gamma-ray collimators are used to define the spatial resolution of the gamma-ray detectors along the axis of the assembly. The capability to rapidly perform a burnup distribution scan using the collimated ion chamber may be important to the verification of burnup for boiling water reactors (BWR).

More Details

Operator in-the-loop control of rotary cranes

Proceedings of SPIE - The International Society for Optical Engineering

Parker, Gordon G.

An open-loop control method is presented for reducing the oscillatory motion of rotary crane payloads during operator commanded maneuvers. A typical rotary crane consists of a multiple degree-of-freedom platform for positioning a spherical pendulum with an attached payload. The crane operator positions the payload by issuing a combination of translational and rotational commands to the platform as well as load-line length changes. Frequently, these pendulum modes are time-varying and exhibit low natural frequencies. Maneuvers are therefore performed at rate sufficiently slow so as not to excite oscillation. The strategy presented here generates crane commands which suppress vibration of the payload without a priori knowledge of the desired maneuver. Results are presented for operator in-the-loop positioning using a real-time dynamics simulation of a three-axis rotary crane where the residual sway magnitude is reduced in excess of 40 dB.

More Details

High-Q photonic band gap resonant cavities: from mm-wave to optical regime

Proceedings of SPIE - The International Society for Optical Engineering

Lin, Shawn-Yu L.

We have realized a new class of high-Q resonant cavity using two-dimensional photonic bandgap (PBG) structures and showed that its Q-value can be as high as approximately 23,000 in the mm-wave regime. We further show that its modal properties, such as the resonant frequency, modal linewidth and number of modes, can be tuned by varying the cavity size. In addition, we present a new nano-fabrication technique for constructing PBG resonant cavities in the near infrared and visible spectral regime.

More Details

Integrated mold/surface-micromachining process

Proceedings of SPIE - The International Society for Optical Engineering

Barron, Carole C.

We detail a new monolithically integrated silicon mold/surface-micromachining process which makes possible the fabrication of stiff, high-aspect-ratio micromachined structures integrated with finely detailed, compliant structures. An important example, which we use here as our process demonstration vehicle, is that of an accelerometer with a large proof mass and compliant suspension. The proof mass is formed by etching a mold into the silicon substrate, lining the mold with oxide, filling it with mechanical polysilicon, and then planarizing back to the level of the substrate. The resulting molded structure is recessed into the substrate, forming a planar surface ideal for subsequent processing. We then add surface-micromachined springs and sense contacts. The principal advantage of this new monolithically integrated mold/surface-micromachining process is that it decouples the design of the different sections of the device: in the case of a sensitive accelerometer, it allows us to optimize independently the proof mass, which needs to be as large, stiff, and heavy as possible, and the suspension, which needs to be as delicate and compliant as possible. The fact that the high-aspect-ratio section of the device is embedded in the substrate enables the monolithic integration of high-aspect-ratio parts with surface-micromachined mechanical parts, and, in the future, also electronics. We anticipate that such an integrated mold/surface micromachining/electronics process will offer versatile high-aspect-ratio micromachined structures that can be batch- fabricated and monolithically integrated into complex microelectromechanical systems.

More Details

System Composer: technology for rapid system integration and remote collaboration

Proceedings - IEEE International Conference on Robotics and Automation

Davies, Brady R.

Sandia National Laboratories has developed an approach to the design, evaluation, deployment and operation of intelligent systems which is called System Composer. This toolkit provides an infrastructure and architecture for robot and automation system users to readily integrate system components and share mechatronic, sensor, and information resources over networks. The technology described in this paper provides a framework for real-time collaboration between researchers, manufacturing entities, design entities, and others without regard to relative location. An overview of the toolkit including its elements and architecture is provided along with examples of its use.

More Details

Compatibility of lead-free solders with lead containing surface finishes as a reliability issue in electronic assemblies

Proceedings - Electronic Components and Technology Conference

Vianco, Paul T.

Enhanced performance goals and environmental restrictions have heightened the consideration for use of alternative solders as replacements for the traditional tin-lead (Sn-Pb) eutectic and near-eutectic alloys. However, the implementation of non-Pb bearing surface finishes may lag behind solder alloy development. A study was performed which examined the effect(s) of Pb contamination on the performance of Sn-Ag-Bi and Sn-Ag-Cu-Sb lead-free solders by the controlled addition of 63Sn-37Pb solder at levels of 0.5 - 8.0 wt.%. Thermal analysis and ring-in-plug shear strength studies were conducted on bulk solder properties. Circuit board prototype studies centered on the performance of 20I/O SOIC gull wing joints. Both alloys exhibited declines in their melting temperatures with greater Sn-Pb additions. The ring-in-plug shear strength of the Sn-Ag-Cu-Sb solder increased slightly with Sn-Pb levels while the Sn-Ag-Bi alloy experienced a strength loss. The mechanical behavior of the SOIC Sn-Ag-Bi solder joints reproduced the strength drop to Sn-Pb contamination; however, the strength levels were insensitive to 10,106 thermal cycles. The Sn-Ag-Cu-Sb solder showed a slight decrease in the gull wing joint strengths that was sensitive to the Pb content of the surface finish.

More Details

Motion planning of a robotic arm on a wheeled vehicle on a rugged terrain

ASCE Specialty Conference, Proceedings

Hwang, Yong K.

This paper presents a set of motion planners for an exploration vehicle on a simulated rugged terrain. The vehicle has four wheels for its movement and a robotic arm mounted on the vehicle for object manipulation. Given a target point to reach with the hand of the arm, our planners first compute a path for the vehicle to the vicinity of the target, then compute an optimal vehicle position from which the arm can reach the target point, and then plans a path for the arm to reach the target. The vehicle path is planned in two stages. A rough path is planned considering only global features of the terrain, and the path is modified by a local planner to avoid more detailed features of the terrain. The planners are expected to increase the autonomy of robots and improve the efficiencies of exploration missions.

More Details

PWB solder wettability after simulated storage

Proceedings - Electronic Components and Technology Conference

Schwartz, Cynthia L.

A new solderability test method has been developed at Sandia National Laboratories that simulates the capillary flow physics of solders on circuit board surfaces. The solderability test geometry was incorporated on a circuit board prototype that was developed for a National Center for Manufacturing Sciences (NCMS) program. The work was conducted under a cooperative research and development agreement between Sandia National Laboratories, NCMS, and several PWB fabricators (AT&T, IBM, Texas Instruments, United Technologies/Hamilton Standard and Hughes Aircraft) to advance PWB interconnect technology. The test was used to investigate the effects of environmental prestressing on the solderability of printed wiring board (PWB) copper finishes. Aging was performed in a controlled chamber representing a typical indoor industrial environment. Solderability testing on as-fabricated and exposed copper samples was performed with the Sn-Pb eutectic solder at four different reflow temperatures (215, 230, 245 and 260°C). Rosin mildly activated (RMA), low solids (LS), and citric acid-based (CA) fluxes were included in the evaluation. Under baseline conditions, capillary flow was minimal at the lowest temperatures with all fluxes. Wetting increased with temperature at both baseline and prestressing conditions. Poor wetting, however, was observed at all temperatures with the LS flux. Capillary flow is effectively restored with the CA flux.

More Details

Highly uniform and reproducible vertical-cavity surface-emitting lasers grown by metallorganic chemical vapor deposition

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Choquette, K.D.

Metallorganic chemical vapor deposition (MOCVD) technology is increasingly recognised as a superior platform for growth of vertical-cavity surface-emitting lasers (VCELs) because of its high throughput, low surface defect density, continuous compositional grading control, and the flexibility for materials and dopant choices. In this paper, it is shown that it is also capable of extremely high wafer uniformity and run-to-run reproducibility.

More Details

Mirror reflectivity and doping considerations for high-performance oxide-confined vertical-cavity lasers

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Choquette, K.D.

A systematic study has been carried out on the effects of doping concentration and reflectivity of the mirror and the oxidation fabrication on the efficiency of 850- and 780-nm oxide-confined VCELs. By optimizing the mirror-doping profile and reflectivity, hex > 40-50% have been achieved. Furthermore, the oxidation temperature can directly influence the VCFL performance. Finally, additional optimization studies and the implementation of the results in optimal VCFL structures have been described.

More Details

Nanosecond, pulsed, frequency-modulated optical parametric oscillator

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Armstrong, Darrell J.

Frequency modulation is demonstrated in a ring-cavity KTP OPO seeded by frequency-modulated Ti:SAP light. The singly resonant OPO is pumped by a single-longitudinal-mode 532-nm Nd:YAG light, and the 800-nm signal seed is modulated at 3.7 GHz to match the OPO cavity's free spectral range. A comparison is presented of OPO operation with FM and AM seeds that demonstrates the dramatic difference in spectral properties and pulse profiles for the two modulation types. FM modulated absorption measurements made using FM OPO is also demonstrated.

More Details

System design for safe robotic handling of nuclear materials

ASCE Specialty Conference, Proceedings

Drotning, William D.

Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical, and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability.

More Details

Dynamical modeling and characterization of a surface micromachined microengine

Miller, Samuel L.

The practical implementation of the surface micromachined microengine [1,2] to perform useful microactuation tasks requires a thorough understanding of the dynamics of the engine. This understanding is necessary in order to create appropriate drive signals, and to experimentally measure fundamental quantities associated with the engine system. We have developed and applied a dynamical model of the microengine and used it to accomplish three objectives: (1) drive inertial loads in a controlled fashion, i.e. specify and achieve a desired time dependent angular position of the output gear,( 2) minimize stress and frictional forces during operation, and (3) as a function of time, experimentally determine forces associated with the output gear, such as the load torque being applied to the output gear due to friction.

More Details

Optimized input shaping for a single flexible robot link

Engineering, Construction, and Operations in Space V

Wilson, D.G.; Stokes, D.; Starr, G.; Robinett, R.D.

More Details

Probability-based stability robustness assessment of controlled structures

Field Jr., R.V.; Voulgaris, P.G.; Bergman, L.A.

Model uncertainty, if ignored, can seriously degrade the performance of an otherwise well-designed control system. If the level of this uncertainty is extreme, the system may even be driven to instability. In the context of structural control, performance degradation and instability imply excessive vibration or even structural failure. Robust control has typically been applied to the issue of model uncertainty through worst-case analyses. These traditional methods include the use of the structured singular value, as applied to the small gain condition, to provide estimates of controller robustness. However, this emphasis on the worst-case scenario has not allowed a probabilistic understanding of robust control. In this paper an attempt to view controller robustness as a probability measure is presented. The probability of failure due to parametric uncertainty is estimated using first-order reliability methods (FORM). It is demonstrated that this method can provide quite accurate results on the probability of failure of actively controlled structures. Moreover, a comparison of this method to a suitability modified structured singular value robustness analysis in a probabilistic framework is performed. It is shown that FORM is the superior analysis technique when applied to a controlled three degree-of-freedom structure. In addition, the robustness qualities of various active control design schemes such as LQR, H{sub 2}, H {sub oo}, and {mu}-synthesis is discussed in order to provide some design guidelines.

More Details

Geomechanical numerical simulations of complex geologic structures

2nd North American Rock Mechanics Symposium, NARM 1996

Arguello, J.G.; Stone, C.M.; Lorenz, J.C.

The ability to predict the mechanical response of rock in three dimensions over the spatial and time scales of geologic interest would give the oil and gas industry the ability to reduce risk on prospects, improve pre-project initial reserve estimates, and lower operating costs. A program has recently been initiated, under the auspices the Advanced Computational Technology Initiative (ACTI), to achieve such a computational technology breakthrough by adapting the unique advanced quasistatic finite element technology developed by Sandia to the mechanics applications important to exploration and production activities within the oil and gas industry. As a pre-cursor to that program, in an effort to evaluate the feasibility of the approach, several complex geologic structures of interest were analyzed with the existing two-dimensional quasistatic finite element code, SANTOS, developed at Sandia. Some examples will be presented and discussed in this paper.

More Details

High temperature surface degradation of III-V nitrides

Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures

Zolper, J.C.

The surface stoichiometry, surface morphology, and electrical conductivity of AlN, GaN, InN, InGaN, and InAlN were examined at rapid thermal annealing temperatures up to 1150 °C. The sheet resistance of the AlN dropped steadily with annealing, but the surface showed signs of roughening only above 1000 °C. Auger electron spectroscopy (AES) analysis showed little change in the surface stoichiometry even at 1150 °C. GaN root mean square (rms) surface roughness showed an overall improvement with annealing, but the surface became pitted at 1000 °C, at which point the sheet resistance also dropped by several orders of magnitude, and AES confirmed a loss of N from the surface. The InN surface had roughened considerably even at 650 °C, and scanning electron microscopy showed significant degradation. In contrast to the binary nitrides, the sheet resistance of InAlN was found to increase by ∼102 from the as grown value (3.2×10-3 Ω cm) after annealing at 800 °C and then remain constant up to 1000 °C, while that of InGaN increased by two orders of magnitude between 700 and 900 °C. The rms roughness increased above 800 and 700 °C, respectively, for InAlN and InGaN samples. In droplets began to form on the surface at 900 °C for InAlN and at 800 °C for InGaN, and then evaporate at 1000 °C, leaving pits. AES analysis showed a decrease in the N concentration in the top 500 Å of the sample for annealing ≥800 °C in both materials. © 1996 American Vacuum Society.

More Details

Photovoltaic lighting system performance

Conference Record of the IEEE Photovoltaic Specialists Conference

Hund, Thomas D.

The performance of 21 PV-powered low pressure sodium lighting systems on a multi-use pathway has been documented in this paper. Specific areas for evaluation include the constant voltage and on/off PV charge controllers, flooded deep-cycle lead-antimony and valve regulated lead-acid (VRLA) gel batteries, low pressure sodium ballasts and lights, and vandal resistant PV modules. The PV lighting system lessons learned and maintenance intervals have been documented over the past 2.5-years. The above performance data has shown that with careful hardware selection, installation, and maintenance intervals the PV lighting systems will operate reliably.

More Details

Synthesis of periodic mesoporous silica thin films

Materials Research Society Symposium - Proceedings

Anderson, M.T.

We have synthesized periodic mesoporous silica thin films (PMSTF) from homogeneous solutions. To synthesize the films a thin layer of a pH = 7 micellar coating solution that contains TMOS is dip- or spin-coated onto silicon wafers, borosilicate glass, or quartz substrates. Ammonia gas is diffused into the solution and causes rapid hydrolysis and condensation of the TMOS and the formation of periodic mesoporous thin films within approximately 10 seconds. The combination of homogeneous solutions and rapid product formation maximizes the concentration of desired product and provides a controlled, predictable microstructure. The films have been made continuous and crack-free by optimizing initial silica concentration and film thickness.

More Details

Techniques to obtain orbital debris encounter speeds in the laboratory

Proceedings of the International Conference on Engineering, Construction, and Operations in Space

Chhabildas, Lalit C.

Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences such as orbital-debris impact on a debris shield. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques used to extend the launch capabilities of a two-stage light gas gun to 16 km/s are described. It is anticipated that this technology will be useful in testing, evaluating, and design of various debris shields proposed for use with many different spacecrafts before deployment.

More Details

The effects of conduction, convection, and radiation on the thermodynamic environment surrounding a heat-generating waste package

Ho, Clifford K.

The thermodynamic environment surrounding a heat-generating waste package can play an important role in the performance of a high-level radioactive waste repository. However, rigorous models of heat transfer are often compromised in near-drift simulations. Convection and radiation are usually ignored or approximated so that simpler conduction models can be used. This paper presents numerical simulations that explicitly model conduction, convection, and radiation in an empty drift following emplacement of a heat-generating waste package. Temperatures and relative humidities are determined at various locations within the drift. Comparisons are made between different models of heat transfer, and the relative effects of each heat transfer mode on the thermodynamic environment of the waste package are examined.

More Details

Preparation of microporous films with sub nanometer pores and their characterization using stress and FTIR measurements

Materials Research Society Symposium - Proceedings

Samuel, J.

We have used a novel technique, measurement of stress isotherms in microporous thin films, as a means of characterizing porosity. The stress measurement was carried out by applying sol-gel thin films on a thin silicon substrate and monitoring the curvature of the substrate under a controlled atmosphere of various vapors. The magnitude of macroscopic bending stress developed in microporous films depends on the relative pressure and molar volume of the adsorbate and reaches a value of 180 MPa for a relative vapor pressure, P/Po = 0.001, of methanol. By using a series of molecules, and observing both the magnitude and the kinetics of stress development while changing the relative pressure, we have determined the pore size of microporous thin films. FTIR measurements were used to acquire adsorption isotherms and to compare pore emptying to stress development, about 80% of the change in stress takes place with no measurable change in the amount adsorbed. We show that for sol-gel films, pore diameters can be controlled in the range of 5-8 angstroms by `solvent templating'.

More Details

ECR etching of GaP, GaAs, InP, and InGaAs in Cl2/Ar, Cl2/N2, BCl3/Ar, and BCl3/N2

Materials Research Society Symposium - Proceedings

Shul, Randy J.

Electron cyclotron resonance (ECR) etching of GaP, GaAs, InP, and InGaAs are reported as a function of percent chlorine-containing gas for Cl2/Ar, Cl2/N2, BCl3/Ar, and BCl3/N2 plasma chemistries. GaAs and GaP etch rates were faster than InP and InGaAs, independent of plasma chemistry due to the low volatility of the InClx etch products. GaAs and GaP etch rates increased as %Cl2 was increased for Cl2/Ar and Cl2/N2 plasmas. The GaAs and GaP etch rates were much slower in BCl3-based plasmas due to lower concentrations of reactive Cl, however enhanced etch rates were observed in BCl3/N2 at 75% BCl3. Smooth etched surfaces were obtained over a wide range of plasma chemistries.

More Details

Complementary HFET technology for low-power mixed-mode applications

Materials Research Society Symposium - Proceedings

Baca, A.G.

Development of a complementary heterostructure field effect transistor (CHFET) technology for low-power, mixed-mode digital-microwave applications is presented. An earlier digital CHFET technology with independently optimizable transistors which operated with 319 ps loaded gate delays at 8.9 fJ is reviewed. Then work demonstrating the applicability of the digital nJFET device as a low-power microwave transistor in a hybrid microwave amplifier without any modification to the digital process is presented. A narrow band amplifier with a 0.7 × 100 μm nJFET as the active element was designed, constructed, and tested. At 1 mW operating power, the amplifier showed 9.7 dB of gain at 2.15 GHz and a minimum noise figure of 2.5 dB. In addition, next generation CHFET transistors with sub 0.5 μm gate lengths were developed. Cutoff frequencies, ft of 49 GHz and 11.5 GHz were achieved for n- and p-channel FETs with 0.3 and 0.4 μm gates, respectively. These FETs will enable both digital and microwave circuits with enhanced performance.

More Details

A model of meteoroid atmospheric entry with implications for the NEO hazard and the impact of comet shoemaker-levy 9 on jupiter

Engineering, Construction, and Operations in Space V

Crawford, D.A.

A new semi-Analytical model describing the entry and deformation of meteoroids entering planetary atmospheres has been developed and calibrated against numerical simulations performed using the CTH shock-physics computational hydrocode. The model starts with the classical treatment of meteoroid ablation which is modified to include an explicit treatment of energy conservation during the ablative process. This is reconciled with terrestrial observations by modeling the formation of a vapor/debris layer (the visible bolide) surrounding the central meteoroid. A mechanical deformation model based on long-wavelength hydrodynamic instability growth is added and calibrated against numerical simulations performed with CTH. The analytical model provides initial conditions for numerical fireball simulations which are compared with observations of the Comet Shoemaker-Levy 9 impact on Jupiter and can be used to assess the terrestrial impact hazard. © 1996 American Society of Civil Engineers.

More Details

Many-body effects in a semiconductor microcavity laser: experiment and theory

Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series

Crawford, M.H.; Choquette, K.D.; Chow, W.W.; Schneider Jr., R.P.

This paper describes a study of the underlying physical mechanisms governing the threshold properties of a VCSEL. In particular, it theoretically and experimentally evaluates the mechanisms that effect the threshold properties as a function of emission wavelength. Other important issues, such as the dependence of the threshold properties on microcavity dimensions, we discussed.

More Details

Magnetotunneling absorption in double quantum wells

Superlattices and Microstructures

Lyo, S.K.

Tunneling absorption is calculated in weakly-coupled n-type asymmetric double quantum wells in an in-plane magnetic field using a linear response theory. Tunneling absorption of photons occurs between the ground sublevels of the quantum wells. We show that the absorption threshold, the resonance energy of absorption, and the linewidth depend sensitively on the magnetic field and the temperature. © 1996 Academic Press Limited.

More Details

Integrated decoupling capacitors using Pb(Zr,Ti)O3 thin films

Materials Research Society Symposium - Proceedings

Dimos, Duane B.

Thin-film decoupling capacitors based on ferroelectric (Pb,La)(Zr,Ti)O3 films are being developed for use in advanced packaging applications. The increased integration that can be achieved by replacing surface-mount capacitors should lead to decreased package volume and improved high-speed performance. For this application, chemical solution deposition is an appropriate fabrication technique since it is a low-cost, high-throughput process. The use of relatively thick Pt electrodes (approximately 1 μm) to minimize series resistance and inductance is a unique aspect to fabricating these devices. In addition, the important electrical properties are discussed, with particular emphasis on lifetime measurements, which suggest that resistance degradation will not be a severe limitation on device performance. Finally, some of the work being done to develop methods of integrating these thin-film capacitors with ICs and MCMs is presented.

More Details

RF magnetron sputter-deposition of La0.5Sr0.5CoO3//Pt composite electrodes for Pb(Zr,Ti)O3 thin film capacitors

Materials Research Society Symposium - Proceedings

Raymond, M.V.

La0.5Sr0.5CoO3 (LSCO) thin films have been deposited, using RF magnetron sputter-deposition for use as an electrode material for Pb(Zr,Ti)O3 (PZT) thin film capacitors. The effect of the O2:Ar sputter gas ratio during deposition, on the LSCO film properties was investigated. It was found that the resistivity of the LSCO films deposited at ambient temperature decreases as the O2:Ar ratio was increased for both the as-deposited and annealed films. In addition, it was found that thin overlayers of LSCO tend to stabilize the underlying Pt//Ti electrode structure during subsequent thermal processing. The LSCO//Pt//Ti composite electrode stack has a low resistivity and provides excellent fatigue performance for PZT capacitors. Furthermore, the LSCO//Pt//Ti electrode sheet resistance does not degrade with annealing temperature and the electrode does not display hillock formation. Possible mechanisms for the stabilization of the Pt//Ti electrode with LSCO overlayers will be discussed.

More Details

Viscosity of concentrated suspensions of sphere/rod mixtures

Chemical Engineering Communications

Mondy, L.A.

The relative viscosity of concentrated suspensions of mixtures of rodlike and spherical particles are measured by falling-ball rheometry. The suspensions are well mixed and homogeneous in the sense that the particles are well dispersed and the rods are randomly oriented. For a constant total volume fraction of solids, the addition of spheres to suspensions of rods results in large decrease in the relative viscosity of the suspension. In these experiments the length of the suspended rods is approximately 10 times the diameter of the suspended spheres. Due to this difference in the characteristic sizes of the two types of particles, the spheres may be considered as part of the suspending homogeneous continuum. A simple model based on this physical picture, after Farris [1968], is very successful in predicting the relative viscosity of the mixed suspensions.

More Details

Technical considerations for the implementation of subsurface microbial barriers for restoration of groundwater at UMTRA sites

Tucker, Mark D.

The Uranium Mill Tailings Remediation Action (UMTRA) Program is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the United States. The surface remediation phase, which has primarily focused on containment and stabilization of the abandoned uranium mill tailings piles, is nearing completion. Attention has now turned to the groundwater restoration phase. One alternative under consideration for groundwater restoration at UMTRA sites is the use of in-situ permeable reactive subsurface barriers. In this type of a system, contaminated groundwater will be allowed to flow naturally through a barrier filled with material which will remove hazardous constituents from the water by physical, chemical or microbial processes while allowing passage of the pore water. The subject of this report is a reactive barrier which would remove uranium and other contaminants of concern from groundwater by microbial action (i.e., a microbial barrier). The purpose of this report is to assess the current state of this technology and to determine issues that must be addressed in order to use this technology at UMTRA sites. The report focuses on six contaminants of concern at UMTRA sites including uranium, arsenic, selenium, molybdenum, cadmium and chromium. In the first section of this report, the fundamental chemical and biological processes that must occur in a microbial barrier to control the migration of contaminants are described. The second section contains a literature review of research which has been conducted on the use of microorganisms to immobilize heavy metals. The third section addresses areas which need further development before a microbial barrier can be implemented at an UMTRA site.

More Details

The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs

Samara, George A.

This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

More Details

Near-plastic threshold indentation and the residual stress in thin films

Materials Research Society Symposium - Proceedings

Houston, Jack E.

In recent studies, we used the Interfacial Force Microscope in a nanoindenter mode to survey the nanomechanical properties of Au films grown on various substrates. Quantitative tabulations of the indentation modulus and the maximum shear stress at the plastic threshold showed consistent values over individual samples but a wide variation from substrate to substrate. These values were compared with film properties such as the surface roughness, average grain size and interfacial adhesion and no correlation was found. However, in a subsequent analysis of the results, we found consistencies which support the integrity of the data and point to the fact that the results are sensitive to some property of the various film/substrate combinations. In the present paper, we discuss these consistencies and show recent measurements which strongly suggest that the property that is being probed is the residual stress in the films caused by their interaction with the substrate surfaces.

More Details
Results 92701–92800 of 96,771
Results 92701–92800 of 96,771