Publications

14 Results

Search results

Jump to search filters

Segmented Aluminum Honeycomb Characteristics in T-Direction, Dynamic Crush Environments

Bateman, Vesta I.; Brown, Frederick A.; Nusser, Michael A.; Swanson, Lloyd H.

Thirteen segmented aluminum honeycomb samples (5 in. diameter and 1.5 in. height) have been crushed in an experimental configuration that uses a drop table impact machine. The 38.0 pcf bulk density samples are a unique segmented geometry that allows the samples to be crushed while maintaining a constant cross-sectional area. A crush weight of 175 lb was used to determine the rate sensitivity of the honeycomb's highest strength orientation, T-direction, in a dynamic environment of {approx}50 fps impact velocity. Experiments were conducted for two honeycomb manufacturers and at two temperatures, ambient and +165 F. Independent measurements of the crush force were made with a custom load cell and a force derived from acceleration measurements on the drop table using the Sum of Weighted Accelerations Technique with a Calibrated Force (SWAT-CAL). Normalized stress-strain curves for all thirteen experiments are included and have excellent repeatability. These data are strictly valid for material characteristics in the T orientation because the cross-sectional area of the honeycomb did not change during the crush. The dynamic crush data have a consistent increase in crush strength of {approximately}7--19% as compared to quasi-static data and suggest that dynamic performance may be inferred from static tests. An uncertainty analysis estimates the error in these data is {+-} 11%.

More Details

High Shock, High Frequency Characteristics of a Mechanical Isolator for a Piezoresistive Accelerometer, the ENDEVCO 7270AM6*

Bateman, Vesta I.; Brown, Frederick A.; Nusser, Michael A.

A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories (SNL). An Extended Technical Assistance Program (ETAP) with the accelerometer manufacturer has resulted in a commercial mechanically isolated accelerometer that is available to the general public, the ENDEVCO 7270AM6*, for three shock acceleration ranges of 6,000 g, 20,000 g, and 60,000 g. The in-axis response shown in this report has acceptable frequency domain performance from DC to 10 kHz and 10(XO)over a temperature range of {minus}65 F to +185 F. Comparisons with other isolated accelerometers show that the ENDEVCO 7270AM6 has ten times the bandwidth of any other commercial isolator. ENDEVCO 7270AM6 cross-axis response is shown in this report.

More Details

Aluminum Honeycomb Characteristics in Dynamic Crush Environments

Bateman, Vesta I.

Fifteen aluminum honeycomb cubes (3 in.) have been crushed in the Mechanical Shock Laboratory's drop table testing machines. This report summarizes shock experiments with honeycomb densities of 22.1 pcf and 38.0 pcf and with crush weights of 45 lb, 168 lb, and 268 lb. The honeycomb samples were crushed in all three orientations, W, L, and T. Most of the experiments were conducted at an impact velocity of {approx}40 fps, but higher velocities of up to 90 fps were used for selected experiments. Where possible, multiple experiments were conducted for a specific orientation and density of the honeycomb samples. All results are for Hexcel honeycomb except for one experiment with Alcore honeycomb and have been evaluated for validity. This report contains the raw acceleration data measured on the top of the drop table carriage, pictures of the crushed samples, and normalized force-displacement curves for all fifteen experiments. These data are not strictly valid for material characteristics in L and T orientations because the cross-sectional area of the honeycomb changed (split) during the crush. However, these are the best data available at this time. These dynamic crush data do suggest a significant increase in crush strength to 8000 psi ({approximately} 25-30% increase) over quasi-static values of {approximately}6000 psi for the 38.0 pcf Hexcel Honeycomb in the T-orientation. An uncertainty analysis is included and estimates the error in these data.

More Details

In-Axis and Cross-Axid Accelerometer Response in Shock Environments

Bateman, Vesta I.

The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories (SNL) in the Mechanical Shock Testing Laboratory for ten years The SNL Shock Laboratory has developed a capability to characterize accelerometers and other transducers with shocks aligned with the transducer's sensing axis and perpendicular to the transducer's sensing axis. This unique capability includes Hopkinson bars made of aluminum, steel, titanium, and beryllium. The bars are configured as both single and split Hopkinson bars. Four different areas that conclude this study are summarized in this paper: characterization of the cross-axis response of the accelerometer in the four environments of static compression, static strain on a beam, dynamic strain, and mechanical shock, the accelerometer's response on a titanium Hopkinson bar with two 45{degree} flats on the end of the bar; failure analysis of the accelerometer; and measurement of the accelerometer's self-generating cable response in a shock environment.

More Details

The use of a beryllium Hopkinson bar to characterize a piezoresistive accelerometer in shock environments

Bateman, Vesta I.

The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. In this paper, the beryllium Hopkinson bar configuration with a laser doppler vibrometer as the reference measurement is described. The in-axis performance of the piezoresistive accelerometer for frequencies of dc-50 kHz and shock magnitudes of up to 70,000 g as determined from measurements with a beryllium Hopkinson bar are presented. Preliminary results of characterizations of the accelerometers subjected to cross-axis shocks in a split beryllium Hopkinson bar configuration are presented.

More Details

High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

Bateman, Vesta I.

A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

More Details

Characteristics of a piezoresistive accelerometer in shock environments up to 150,000 G

Bateman, Vesta I.

The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our undemanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. Two different Hopkinson bar materials are being used: Titanium and beryllium The in-axis performance of the piezoresistive accelerometer for frequencies of dc-10 kHz and shock magnitudes of up to 150,000 g as determined from measurements with a titanium Hopkinson bar are presented. The beryllium Hopkinson bar configuration is described. Preliminary in-axis characteristics of the piezoresistive accelerometer at a nominal shock level of 50,000 g for a frequency range of DC-30 kHz determined from the beryllium bar are presented.

More Details

Evaluation of shock isolation techniques for a piezoresistive accelerometer

Bateman, Vesta I.

Sandia conducts impact testing for a variety of structures. In this slapdown test, one end of the cask impacts the hard concrete target, then the structure rotates so that the other end of the cask impacts the target. During an impact test, metal to metal contact may occur within the structure and produce high frequency, high amplitude shock inputs. The high frequency portion of this transient vibration has been observed to excite the accelerometer resonance even though this resonance exceeds 350 kHz. The amplitude of the resonating accelerometer response can be so large that the data are clipped and are rendered useless. If the data are not clipped, a digital filter must be applied to eliminate the undesired accelerometer resonant response. If possible, it is more desirable to prevent excitation of the accelerometer resonance, This may be accomplished by mechanically isolating the accelerometer from the high frequency excitation without degrading the transducer response in the bandwidth of interest which is usually 10 kHz or less. To achieve this desirable isolation, two mounting configurations were designed and characterized. The objective of this paper is to describe the evaluation technique and to discuss the shock isolation properties of each mounting configuration. One configuration was actually used in a field test of bomb impacting a target. 4 figs.

More Details
14 Results
14 Results