Publications

5 Results

Search results

Jump to search filters

Meso-/micro-optical system interface coupling solutions

Boye, Robert; Kemme, Shanalyn A.; Armendariz, Marcelino

Optoelectronic microsystems are more and more prevalent as researchers seek to increase transmission bandwidths, implement electrical isolation, enhance security, or take advantage of sensitive optical sensing methods. Board level photonic integration techniques continue to improve, but photonic microsystems and fiber interfaces remain problematic, especially upon size reduction. Optical fiber is unmatched as a transmission medium for distances ranging from tens of centimeters to kilometers. The difficulty with using optical fiber is the small size of the core (approximately 9 {micro}m for the core of single mode telecommunications fiber) and the tight requirement on spot size and input numerical aperture (NA). Coupling to devices such as vertical cavity emitting lasers (VCSELs) and photodetectors presents further difficulties since these elements work in a plane orthogonal to the electronics board and typically require additional optics. This leads to the need for a packaging solution that can incorporate dissimilar materials while maintaining the tight alignment tolerances required by the optics. Over the course of this LDRD project, we have examined the capabilities of components such as VCSELs and photodetectors for high-speed operation and investigated the alignment tolerances required by the optical system. A solder reflow process has been developed to help fulfill these packaging requirements and the results of that work are presented here.

More Details

A low power ultra-fast current transient measuring device

Doyle, B.L.; Foltynowicz, Robert J.; Sullivan, John P.; Armendariz, Marcelino; Zutavern, Fred J.

We have studied the feasibility of an innovative device to sample 1ns low-power single current transients with a time resolution better than 10 ps. The new concept explored here is to close photoconductive semiconductor switches (PCSS) with a Laser for a period of 10 ps. The PCSSs are in a series along a Transmission Line (TL). The transient propagates along the TL allowing one to carry out a spatially resolved sampling of charge at a fixed time instead of the usual timesampling of the current. The fabrication of such a digitizer was proven to be feasible but very difficult.

More Details

Advanced packaging technology for high frequency photonic applications

Armendariz, Marcelino

An advanced packaging concept has been developed for optical devices. This concept allows multiple fibers to be coupled to photonic integrated circuits, with no fiber penetration of the package walls. The principles used to accomplish this concept involves a second-order grating to couple light in or out of the photonic circuit, and a binary optic lens which receives this light and focuses it into a single-mode optical fiber. Design, fabrication and electrical/optical measurements of this packaging concept are described.

More Details
5 Results
5 Results