Publications

Results 2026–2050 of 99,299

Search results

Jump to search filters

M4 Summary of EBS International Activity

Hadgu, Teklu; Matteo, Edward N.

Thermal-Hydrologic (TH) modeling of DECOVALEX 2023, Task C has continued in FY23. This report summarizes progress in TH modeling of Step 1c, with calibration modeling and the addition of shotcrete. The work involves 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). While Step 1 is focused on modeling the heating phase of the FE experiment with changes in pore pressure in the Opalinus clay resulting from heating, Step 1c is focused on calibration of models using available data.

More Details

Multiscale Reactive Model for 1,3,5-Triamino-2,4,6-trinitrobenzene Inferred by Reactive MD Simulations and Unsupervised Learning

Journal of Physical Chemistry. C

Lafourcade, Paul; Maillet, Jean-Bernard; Roche, Jerome; Sakano, Michael N.; Hamilton, Brenden W.; Strachan, Alejandro

When high-energy-density materials are subjected to thermal or mechanical insults at extreme conditions (shock loading), a coupled response between the thermo-mechanical and chemical behaviors is systematically induced. Herein we develop a reaction model for the fast chemistry of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) at the mesoscopic scale, where the chemical behavior is determined by underlying microscopic reactive simulations. The slow carbon cluster formation is not discussed in the present work. All-atom reactive molecular dynamics (MD) simulations are performed with the ReaxFF potential, and a reduced-order chemical kinetics model for TATB is fitted to isothermal and adiabatic simulations of single crystal chemical decomposition. Unsupervised machine learning techniques based on non-negative matrix factorization are applied to MD trajectories to model the decomposition kinetics of TATB in terms of a four-component model. The associated heats of reaction are fit to the temperature evolution from adiabatic decomposition trajectories. Using a chemical species analysis, we show that non-negative matrix factorization captures the main chemical decomposition steps of TATB and provides an accurate estimation of their evolution with temperature. The final analytical formulation, coupled to a diffusion term, is incorporated into a continuum formalism, and simulation results are compared one-to-one against MD simulations of 1D reaction propagation along different crystallographic directions and with different initial temperatures. A good agreement is found for both the temporal and spatial evolution of the temperature field.

More Details

2.5D HI Packaging of the Power Converter using TSV interposer

Chung, Hyunim; Young, Andrew I.; Klein, Brianna A.; Mcdonough, Matthew; Neely, Jason C.

Abstract: Advantages of the 2.5D HI (Heterogeneous Integration) electronics packaging of the power electronics compared to PCB packaging will be presented. Current 2.5D packaging effort using TSV (Through Silicon Via) will be presented in terms of fabrication, microstructural analysis, reliability, and thermal simulation.

More Details

Developing a Facility NMAC Plan

Williams, Martha C.; Pope, Noah G.

The table presented below suggests the basic information that should be covered in a facility NMAC Plan for an NMAC program that is designed for nuclear security. The topics are appropriate for and should be addressed by all facilities in their NMAC Plans. They are appropriate for NMAC Plans for nuclear power plants, research reactors, fuel manufacturing facilities, facilities that produce medical isotopes, and other facilities. The difference is in the intensity with which the various measures are applied and the thoroughness of the description of the application (i.e., the program requirements). The robustness of a facility NMAC program and the content of its NMAC Plan should be graded in accordance with the type of facility and the category of its nuclear material.

More Details

Towards a More Effective Hybrid Workforce Culture in a Computationally Focused Research Center

Chance, Frances S.; Lofstead, Gerald F.; Metodi, Tzvetan S.; Mitchell, Scott A.; Rutka, Phyllis A.; Steinmetz, Scott; Shead, Timothy M.; Teves, Joshua B.; Warrender, Christina E.

It is essential to Sandia National Laboratory’s continued success in scientific and technological advances and mission delivery to embrace a hybrid workforce culture under which current and future employees can thrive. This report focuses on the findings of the Hybrid Work Team for the Center for Computing Research, which met weekly from March to June 2023 and conducted a survey across the Center at Sandia. Conclusions in this report are drawn from the 9 authors of this report, which comprises the Hybrid Work Team, and 15 responses to a center-wide survey, as well as numerous conversations with colleagues. A major finding was widespread dissatisfaction with the quantity, execution, and tooling surrounding formal meetings with remote participants. While there was consensus that remote work enables people to produce high quality individual and technical work, there was also consensus that there was widespread social disconnect, with particular concern about hires that were made after the onset of the Covid-19 pandemic. There were many concerns about tooling and policy to facilitate remote collaboration both within Sandia and with its external collaborators. This report includes recommendations for mitigating these problems. For problems for which obvious recommendations cannot be made, ideas of what a successful solution might look like are presented.

More Details

Accelerated Aging Scoping Study of Additively Manufactured Coupons

Pavia, Adriana; Nissen, April E.H.; Massey, Lee T.; Menon, Nalini C.; Leong-Hau, Kirsty; Foulk, James W.

Additive manufacturing (AM) is a relatively new technological advancement that allows for rapid prototyping, development of intricate shapes, and reduction in manufacturing time. The materials of interest for this project are Ultem 1010, ABS M30, FDM Nylon 12, PC, and PPSF. However, little is known regarding the aging behavior of these AM materials. The limited aging study outlined herein was designed to compare the chemical, physical, and mechanical properties of AM parts as they experience accelerated aging at 70 °C for a total of 24 weeks. In general, ABS M30 stood out as it appeared to undergo chemical and physical changes leading to increase in density and an overall more brittle material, making this commonly used material not attractive for long-term use.

More Details

Introduction to the Special Section on Seismoacoustics and Seismoacoustic Data Fusion

Bulletin of the Seismological Society of America

Dannemann Dugick, Fransiska K.; Bishop, Jordan W.; Martire, Leo; Iezzi, Alexandra M.; Assink, Jelle D.; Brissaud, Quentin; Arrowsmith, Stephen

This special section of the Bulletin of the Seismological Society of America provides a broad overview on recent advances to the understanding of the seismoacoustic wavefield through 19 articles. Leveraging multiphenomenology datasets is instrumental for the continued success of future planetary missions, nuclear test ban treaty verification, and natural hazard monitoring. Progress in our theoretical understanding of mechanical coupling, advancements in coupled-media wave modeling, and developments of efficient multitechnology inversion procedures are key to fully exploiting geophysical datasets on Earth and beyond. We begin by highlighting papers describing experimental setups and instrumentation, followed by characterization of natural and anthropogenic sources of interest, and ending in new open-access datasets. Finally, we conclude with an overview of challenges that remain as well as some potential directions for future investigation within the growing multidisciplinary field of seismoacoustics.

More Details

Uncertainty Quantification for Component Modeling Using the Discrete-Direct Approach

Mersch, John; Miles, Paul R.; Fowler, Deborah M.; Laursen, Christopher M.; Fuchs, Brian M.

Threaded fastener behavior can be an important aspect of complex component and system behavior, but there is no one-size-fits-all finite element analysis technique. Proper modeling of threaded fastener joints requires careful consideration of many details, from test setup and data acquisition to constitutive modeling and uncertainty quantification approaches. This report details analysis of a “mini-radax” bolted-joint exemplar where a Discrete-Direct uncertainty quantification approach is employed to evaluate margin of the component. The mini-radax geometry is tested to failure on a drop table, and single-coupon tests of individual fasteners serve as foundational data for the analysis. Analysis predictions complement the test data well and provide additional context for engineering decision-making.

More Details
Results 2026–2050 of 99,299
Results 2026–2050 of 99,299