Variations in water use at short time scales, seconds to minutes, produce variation in transport of solutes through a water supply network. However, the degree to which short term variations in demand influence the solute concentrations at different locations in the network is poorly understood. Here we examine the effect of variability in demand on advective transport of a conservative solute (e.g. chloride) through a water supply network by defining the demand at each node in the model as a stochastic process. The stochastic demands are generated using a Poisson rectangular pulse (PRP) model for the case of a dead-end water line serving 20 homes represented as a single node. The simple dead-end network model is used to examine the variation in Reynolds number, the proportion of time that there is no flow (i.e., stagnant conditions, in the pipe) and the travel time defined as the time for cumulative demand to equal the volume of water in 1000 feet of pipe. Changes in these performance measures are examined as the fine scale demand functions are aggregated over larger and larger time scales. Results are compared to previously developed analytical expressions for the first and second moments of these three performance measures. A new approach to predict the reduction in variance of the performance measures based on perturbation theory is presented and compared to the results of the numerical simulations. The distribution of travel time is relatively consistent across time scales until the time step approaches that of the travel time. However, the proportion of stagnant flow periods decreases rapidly as the simulation time step increases. Both sets of analytical expressions are capable of providing adequate, first-order predictions of the simulation results.
Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using dedicated the lowflow system, and review data for sample system affects on nitrate concentrations.
We have computed the low energy quantum states and low frequency dynamical susceptibility of complex quantum spin systems in the limit of strong interactions, obtaining exact results for system sizes enormously larger than accessible previously. The ground state is a complex superposition of a substantial fraction of all the classical ground states, and yet the dynamical susceptibility exhibits sharp resonances reminiscent of the behavior of single spins. These results show that strongly interacting quantum systems can organize to generate coherent excitations and shed light on recent experiments demonstrating that coherent excitations are present in a disordered spin liquid. The dependence of the energy spectra on system size differs qualitatively from that of the energy spectra of random undirected bipartite graphs with similar statistics, implying that strong interactions are giving rise to these unusual spectral properties.
Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. This algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.
A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.
A sample of polymeric propellant binder was aged from 0 to 60 days at 95 C and analyzed using FT-IR step scan photoacoustic spectroscopy. This technique has the ability of to obtain spectra of the polymer as a function of depth into the polymer material. Multivariate curve resolution was applied to the spectra data obtained to extract the contributions of the aged and un-aged spectral components from the spectra. It was found that multivariate curve resolution could efficiently separate highly overlapped spectra and yielded insights into the aging process.
We use a Monte Carlo approach to explore the potential impact of observation and inversion model errors on the spatial statistics of field-estimated unsaturated hydraulic properties. For this analysis we simulate tension infiltrometer measurements in a series of idealized realities, each consisting of spatially correlated random property fields. We consider only simple measurement errors that can be easily modeled. We show that estimated hydraulic properties are strongly biased by small, simple observation and inversion model errors. This bias can lead to order-of-magnitude errors in spatial statistics and artificial cross correlation between measured properties. The magnitude of bias varies with the true mean of the property field, the type of error considered, and the type of spatial statistic. We find no unique indicators of bias as property values may appear reasonable and spatial statistics may look realistic. Our results suggest new concerns for geostatisticians, stochastic modelers, and unsaturated zone practitioners who are unaware of the potential impact of spatial bias in field-estimated properties.
Shear-induced migration of particles is studied during the slow flow of suspensions of neutrally buoyant spheres, at 50% particle volume fraction, in an inelastic but shear-thinning, suspending fluid. The suspension is flowing in between a rotating inner cylinder and a stationary outer cylinder. The conditions are such that nonhydrodynamic effects are negligible. Nuclear magnetic resonance (NMR) imaging demonstrates that the movement of particles away from the high shear rate region is more pronounced than for a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al., but extended to shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model captures many of the trends found in the experimental data, but does not yet agree quantitatively. In fact, quantitative agreement with a diffusive flux constitutive equation would be impossible without the addition of another fitting parameter that may depend on the shear-thinning nature of the suspending fluid. Because of this, we feel that the Phillips model may be fundamentally inadequate for simulating flows of particles in non-Newtonian suspending fluids without the introduction of a normal stress correction or other augmenting terms.
Fires in aircraft engine nacelles must be rapidly suppressed to avoid loss of life and property. The design of new and retrofit suppression systems has become significantly more challenging due to the ban on production of Halon 1301 for environmental concerns. Since fire dynamics and the transport of suppressants within the nacelle are both largely determined by the available air flow, efforts to define systems using less effective suppressants greatly benefit from characterization of nacelle air flow fields. A combined experimental and computational study of nacelle air flow therefore has been initiated. Calculations have been performed using both CFD-ACE (a Computational Fluid Dynamics (CFD) model with a body-fitted coordinate grid) and VULCAN (a CFD-based fire field model with a Cartesian "brick" shaped grid). A quarter-scale test fixture was designed and fabricated for the purpose of obtaining spatially-resolved measurements of velocity and turbulence intensity in a smooth nacelle. Numerical calculations have been performed for the conditions of the experiment and comparisons with experimental results obtained from the quarter-scale test fixture are discussed. In addition, numerical simulations were performed to assess the sensitivity of the predictions to the grid size and to the turbulence models with and without wall functions. In general, the velocity predictions show very good agreement with the data in the center of the channel but deviate near the walls. The turbulence intensity results tend to amplify the differences in velocity, although most of the trends are in agreement. In addition, there were some differences between VULCAN and CFD-ACE results in the angled wall regions due to the Cartesian grid structure used by the VULCAN code. Also, the experimental data tended to show poorer resolution near the walls of the transition ducts. The increased uncertainty in the data highlights some of the challenges in getting data near the walls due to the low signal to noise ratio. Overall, this effort provided a benchmark case for both the VULCAN and CFD-ACE codes for the application of interest.
High-energy ion-irradiated 3.3-nm oxynitride film and 2.2-nm SiO2-film MOS capacitors show premature break-down during subsequent electrical stress. This degradation in breakdown increases with increasing ion linear energy transfer (LET), increasing ion fluence, and decreasing oxide thickness. The reliability degradation due to high-energy ion-induced latent defects is explained by a simple percolation model of conduction through SiO2 layers with irradiation and/or electrical stress-induced defects. Monitoring the gate-leakage current reveals the presence of latent defects in the dielectric films. These results may be significant to future single-event effects and single-event gate rupture tests for MOS devices and ICs with ultrathin gate oxides.
The purpose of this study was to generate the material database for carbon and glass composite panels created by the SCRIMP process. The materials tested were glass/polyester composites, two types of carbon/polyester composites, and carbon and glass hybrid composites. The differences between the two types of carbon/polyester, which we call Type 1 and Type 2, are the ply thickness (.037 inch/ply and .048 inch/ply) and slightly different treatment of polyester resin. The tests that were performed for this study are four-point-bending tests, tension tests, panel warping tests, and beam bend-twist coupling tests. The material properties of interest were basic longitudinal and transverse stiffness and strength, residual stress due to curing, and the effect of bend-twist coupling. The bend-twist coupling is a feature that can be added to the composite laminate or structure, such that when it is bent, it will also twist.
There have been significant efforts to develop cognitively plausible software architectures of human information processing in the last three decades. This report summarizes several architectures that continue to be developed. The specific type of cognitive models developed are known as production system architectures, which refers to the characterization of knowledge in terms of procedural (''how-to'' knowledge) condition-action relationships consisting of declarative (''what'' or factual) knowledge. To illustrate the ability for these models to instantiate human cognitive performance, a simulation using ACT-R (Adaptive Control of Thought - Rational) was implemented for a supervisory control task. Correlations between simulated and human learning of the task were measured and yielded correlations as high as 0.93.
Tethered films of poly n-isopropylacrylamide (PNIPAM) films have been developed as materials that can be used to switch the chemistry of a surface in response to thermal activation. In water, PNIPAM exhibits a thermally-activated phase transition that is accompanied by significant changes in polymer volume, water contact angle, and protein adsorption characteristics. New synthesis routes have been developed to prepare PNIPAM films via in-situ polymerization on self-assembled monolayers. Swelling transitions in tethered films have been characterized using a wide range of techniques including surface plasmon resonance, attenuated total reflectance infrared spectroscopy, interfacial force microscopy, neutron reflectivity, and theoretical modeling. PNIPAM films have been deployed in integrated microfluidic systems. Switchable PNIPAM films have been investigated for a range of fluidic applications including fluid pumping via surface energy switching and switchable protein traps for pre-concentrating and separating proteins on microfluidic chips.
These editing tips contain helpful suggestions to assist writers who are writing, editing, and publishing technical publications in the JNWPS. The suggestions clarify some of the most common writing problems and requirements of two publications used in the JNWPS: ''DOE-DTRA TP 1-1, Joint Nuclear Weapons Publications System Operating Procedures, Specifications, and Standards, and United States Government Printing Office Style Manual''. Topics include requirements for abbreviations, formats for drafts, layouts of illustrations and tables, appropriate wording for interim changes, guidance for creating a list of effective pages, how to insert and delete pages and paragraphs, referencing other technical publications, use of revision bars, requirements for safety precautions, use of hyphens, and how to place warnings, cautions, and notes. Also included are a writer's checklist, samples of draft title pages, and a section of helpful tips for the writers who use the department's desktop publishing software program, Adobe{reg_sign} FrameMaker{reg_sign}.
The primary goal of this portion of the LDRD is to develop a vertical programmable diffraction grating that can be fabricated with Sandia's Ultra-planar Multi-level MEMS Technology, the SUMMiT V{trademark} process. This grating is targeted for use in a chemical detection system dubbed the Polychromator. A secondary goal is to design diffraction grating structures with additional degrees of freedom (DOF). Gratings with 2.5 microns of vertical stroke have been realized. In addition, rotational DOF grating structures have been successfully actuated, and a structure has been developed that minimizes residual stress effects.
This project combined nanocomposite materials with microfabricated optical device structures for the development of microsensor arrays. For the nanocomposite materials we have designed, developed, and characterized self-assembling, organic/inorganic hybrid optical sensor materials that offer highly selective, sensitive, and reversible sensing capability with unique hierarchical nanoarchitecture. Lipid bilayers and micellar polydiacetylene provided selective optical response towards metal ions (Pb(II), Hg(II)), a lectin protein (Concanavalin A), temperature, and organic solvent vapor. These materials formed as composites in silica sol-gels to impart physical protection of the self-assembled structures, provide a means for thin film surface coatings, and allow facile transport of analytes. The microoptical devices were designed and prepared with two- and four-level diffraction gratings coupled with conformal gold coatings on fused silica. The structure created a number of light reflections that illuminated multiple spots along the silica surface. These points of illumination would act as the excitation light for the fluorescence response of the sensor materials. Finally, we demonstrate an integrated device using the two-level diffraction grating coupled with the polydiacetylene/silica material.
This paper presents a high-level overview of the algorithms and supporting functionality provided by SIERRA Framework Version 3 for h-adaptive finite-element mechanics application development. Also presented is a fairly comprehensive description of what is required by the application codes to use the SIERRA h-adaptivity services. In general, the SIERRA framework provides the functionality for hierarchically subdividing elements in a distributed parallel environment, as well as dynamic load balancing. The mechanics application code is required to supply an a posteriori error indicator, prolongation and restriction operators for the field variables, hanging-node constraint handlers, and execution control code. This paper does not describe the Application Programming Interface (API), although references to SIERRA framework classes are given where appropriate.
Vibrational spectra can serve as chemical fingerprints for positive identification of chemical and biological warfare molecules. The required speed and sensitivity might be achieved with surface-enhanced Raman spectroscopy (SERS) using nanotextured metal surfaces. Systematic and reproducible methods for preparing metallic surfaces that maximize sensitivity have not been previously developed. This work sought to develop methods for forming high-efficiency metallic nanostructures that can be integrated with either gas or liquid-phase chem-lab-on-a-chip separation columns to provide a highly sensitive, highly selective microanalytical system for detecting current and future chem/bio agents. In addition, improved protein microchromatographic systems have been made by the creation of acrylate-based porous polymer monoliths that can serve as protein preconcentrators to reduce the optical system sensitivity required to detect and identify a particular protein, such as a bacterial toxin.