Publications

Results 1–25 of 128

Search results

Jump to search filters

Application of machine learning for modeling brønsted-guggenheim-scatchard specific ion interaction theory (SIT) coefficients

Applied Geochemistry

Lopez, Carlos M.; Wang, Yifeng; Xiong, Yongliang X.; Zhang, Pengchu Z.; Favela, S.D.

Machine learning methodologies can provide insight into Brønsted-Guggenheim-Scatchard specific ion interaction theory (SIT) parameter values where experimental data availability may be limited. This study develops and executes machine learning frameworks to model the SIT interaction coefficient, ε. Key findings include successful estimations of ε via artificial neural networks using clustering and value prediction approaches. Applicability to other chemical parameters is also assessed briefly. Models developed here provide support for a use-case of machine learning in geologic nuclear waste disposal research applications, namely in predictions of chemical behaviors of high ionic strength solutions (i.e., subsurface brines).

More Details

Brine Availability Test in Salt (BATS) FY23 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Xiong, Yongliang X.; Choens, Robert C.; Paul, Matthew J.; Downs, Christine D.; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Otto, Shawn; Davis, Jon; Eldridge, Daniel; Stansberry, Aidan; Rutqvist, Johnny; Wu, Yuxin; Tounsi, Hafssa; Hu, Mengsu; Uhlemann, Sebastian; Wang, Jiannan

This report summarizes the fiscal year 2023 (FY23) status of the second phase of a series of borehole heater tests in salt at the Waste Isolation Pilot Plant (WIPP) funded by the Disposal Research and Development (R&D) program of the Spent Fuel & Waste Science and Technology (SFWST) office at the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office in the Spent Fuel and Waste Disposition (SFWD) program.

More Details

A Thermodynamic Model for Nd(III)–Sulfate Interaction at High Ionic Strengths and Elevated Temperatures: Applications to Rare Earth Element Extraction

Journal of Solution Chemistry

Xiong, Yongliang X.; Xu, Guangping X.; Wang, Yifeng

Neodymium (Nd), a rare earth element (REE), is critical to numerous industries. Neodymium can be extracted from ore concentrates, waste materials, or recycled materials such as recycled Nd-Fe-B permanent magnets. In a standard process, concentrated sulfuric acid (H2SO4) is used as an extraction/leaching agent. Therefore, knowledge of Nd(III)–sulfate interaction at high ionic strengths is important for optimization of the extraction process. In addition, sulfate is also a major species in natural surface waters and present in nuclear waste streams. Nd(III) has been used a chemical analog to trivalent actinides in nuclear waste research and development. Consequently, knowledge of Nd(III)-sulfate interactions is also impactful to the field of nuclear waste management. In this study, we have developed a thermodynamic model that can describe the interaction of Nd(III) with sulfate to ionic strengths up to ~ 16.5 mol·kg–1 and to temperatures up to 100 °C. The model adopts the Pitzer formulation to describe activity coefficients of aqueous species. This model can be used to design and optimize a chemical process for REE recovery from ore concentrates, recycled materials, and acid mine drainage (AMD) and to understand the mobility of REEs and actinides in the environment.

More Details

Recycling of Lead Pastes from Spent Lead–Acid Batteries: Thermodynamic Constraints for Desulphurization

Recycling

Xiong, Yongliang X.

Lead–acid batteries are important to modern society because of their wide usage and low cost. The primary source for production of new lead–acid batteries is from recycling spent lead–acid batteries. In spent lead–acid batteries, lead is primarily present as lead pastes. In lead pastes, the dominant component is lead sulfate (PbSO4, mineral name anglesite) and lead oxide sulfate (PbO•PbSO4, mineral name lanarkite), which accounts for more than 60% of lead pastes. In the recycling process for lead–acid batteries, the desulphurization of lead sulfate is the key part to the overall process. In this work, the thermodynamic constraints for desulphurization via the hydrometallurgical route for recycling lead pastes are presented. The thermodynamic constraints are established according to the thermodynamic model that is applicable and important to recycling of lead pastes via hydrometallurgical routes in high ionic strength solutions that are expected to be in industrial processes. The thermodynamic database is based on the Pitzer equations for calculations of activity coefficients of aqueous species. The desulphurization of lead sulfates represented by PbSO4 can be achieved through the following routes. (1) conversion to lead oxalate in oxalate-bearing solutions; (2) conversion to lead monoxide in alkaline solutions; and (3) conversion to lead carbonate in carbonate solutions. Among the above three routes, the conversion to lead oxalate is environmentally friendly and has a strong thermodynamic driving force. Oxalate-bearing solutions such as oxalic acid and potassium oxalate solutions will provide high activities of oxalate that are many orders of magnitude higher than those required for conversion of anglesite or lanarkite to lead oxalate, in accordance with the thermodynamic model established for the oxalate system. An additional advantage of the oxalate conversion route is that no additional reductant is needed to reduce lead dioxide to lead oxide or lead sulfate, as there is a strong thermodynamic force to convert lead dioxide directly to lead oxalate. As lanarkite is an important sulfate-bearing phase in lead pastes, this study evaluates the solubility constant for lanarkite regarding the following reaction, based on the solubility data, PbO•PbSO4 + 2H+ ⇌ 2Pb2+ + SO42− + H2O(l).

More Details

Brine Availability Test in Salt (BATS) FY21 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Xiong, Yongliang X.; Choens, Robert C.; Paul, Matthew J.; Stauffer, Phil; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Otto, Shawn; Davis, Jon; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Wang, Jiannan

This report summarizes the 2021 fiscal year (FY21) status of ongoing borehole heater tests in salt funded by the disposal research and development (R&D) program of the Office of Spent Fuel & Waste Science and Technology (SFWST) of the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office of Spent Fuel and Waste Disposition (SFWD). This report satisfies SFWST milestone M2SF- 21SN010303052 by summarizing test activities and data collected during FY21. The Brine Availability Test in Salt (BATS) is fielded in a pair of similar arrays of horizontal boreholes in an experimental area at the Waste Isolation Pilot Plant (WIPP). One array is heated, the other unheated. Each array consists of 14 boreholes, including a central borehole with gas circulation to measure water production, a cement seal exposure test, thermocouples to measure temperature, electrodes to infer resistivity, a packer-isolated borehole to add tracers, fiber optics to measure temperature and strain, and piezoelectric transducers to measure acoustic emissions. The key new data collected during FY21 include a series of gas tracer tests (BATS phase 1b), a pair of liquid tracer tests (BATS phase 1c), and data collected under ambient conditions (including a period with limited access due to the ongoing pandemic) since BATS phase 1a in 2020. A comparison of heated and unheated gas tracer test results clearly shows a decrease in permeability of the salt upon heating (i.e., thermal expansion closes fractures, which reduces permeability).

More Details

Experimental and modeling studies of PR and ND oxalate solubility to high ionic strengths: Insight into actinide(III) oxalates

Chemical Geology

Xiong, Yongliang X.; Wang, Yifeng

Actinide oxalates are chemical compounds important to nuclear industry, ranging from actinide separation in waste reprocessing, to production of specialty actinides, and to disposal of high level nuclear waste (HLW) and spent nuclear fuel (SNF). In this study, the solubility constants for Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O by performing solubility experiments in HNO3 and mixtures of HNO3 and H2C2O4 at 23.0 ± 0.2 °C have been determined. The targeted starting materials, Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O, were successfully synthesized at room temperature using PrCl3, NdCl3 and oxalic acid as the source metrials. Then, we utilized the targeted solubility-controlling phases to conduct solubility measurements. There was no phase change over the entire periods of experiments, demonstrating that Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O were the solubility-controlling phases in our respective experiments. Based on our experimental data, we have developed a thermodynamic model for Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O in the mixtures of HNO3 and H2C2O4 to high ionic strengths. The model for Pr2(C2O4)3·10H2O reproduces well the reported experimental data for Pu2(C2O4)3·10H2O, which are not utilized for the model development, demonstrating that Pr(III) is an excellent analog for Pu(III). Similarly, the model for Nd2(C2O4)3·10H2O reproduces the solubility of Am2(C2O4)3·10H2O and Cm2(C2O4)3·10H2O. The Pitzer model was used for the calculation of activity coefficients. Based on the published, well established model for dissociation constants for oxalic acid and stability constants for actinide-oxalate complexes [i.e., AmC2O4+, and Am(C2O4)2−] to high ionic strengths, we have obtained the solubility constants (log10K0) for the following reactions at 25 °C,Pr2(C2O4)3·10H2O ⇌ 2Pr3+ + 3C2O42− + 10H2O(l)Nd2(C2O4)3·10H2O ⇌ 2Nd3+ + 3C2O42− + 10H2O(l) to be −30.82 ± 0.30 (2σ), and −31.14 ± 0.35 (2σ), respectively. These values can be directly applied to Pu2(C2O4)3·10H2O, Am2(C2O4)3·10H2O and Cm2(C2O4)3·10H2O. The model established for actinide oxalates by this study provides the needed knowledge with regard to solubilities of actinide/REE oxalates at various ionic strengths, and is expected to find applications in many fields, including the geological disposal of nuclear waste and the mobility of REE under the surface conditions, as Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O can be regarded as the pure Pr and Nd end-members of deveroite, a recently discovered natural REE oxalate with the following stoichiometry, (Ce1.01Nd0.33La0.32Pr0.11Y0.11Sm0.01Pb0.04U0.03Th0.01Ca0.04)2.01(C2O4)2.99·9.99H2O. Regarding its importance in the geological disposal of nuclear waste, Am2(C2O4)3·10H2O/Pu2(C2O4)3·10H2O/Cm2(C2O4)3·10H2O can be the source-term phase for actinides, as demonstrated by the instance in the disposal in clay/shale formations. This is exemplified by the stability of Am2(C2O4)3·10H2O in comparison with Am(OH)3(am), Am(OH)3(s) and AmCO3(OH)(s) under the relevant geological repository conditions.

More Details

Uranyl oxalate species in high ionic strength environments: Stability constants for aqueous and solid uranyl oxalate complexes

Radiochimica Acta

Xiong, Yongliang X.; Wang, Yifeng

Uranyl ion, UO22+, and its aqueous complexes with organic and inorganic ligands can be the dominant species for uranium transport on the Earth surface or in a nuclear waste disposal system if an oxidizing condition is present. As an important biodegradation product, oxalate, C2O42−, is ubiquitous in natural environments and is known for its ability to complex with the uranyl ion. Oxalate can also form solid phases with uranyl ion in certain environments thus limiting uranium migration. Therefore, the determination of stability constants for aqueous and solid uranyl oxalate complexes is important not only to the understanding of uranium mobility in natural environments, but also to the performance assessment of nuclear waste disposal. Here we developed a thermodynamic model for the UO22+-Na+-H+-Cl--ClO4--C2O42--NO3--H2O system to ionic strength up to ∼11 mol•kg−1. We constrained the stability constants for UO2C2O4(aq) and UO2(C2O4)22− at infinite dilution based on our evaluation of the literature data over a wide range of ionic strengths up to ∼11 mol•kg−1. We also obtained the solubility constants at infinite dilution for solid uranyl oxalates, UO2C2O4•3H2O, based on the solubility data over a wide range of ionic strengths. The developed model will enable for the accurate stability assessment of oxalate complexes affecting uranium mobility under a wide range of conditions including those in deep geological repositories.

More Details

First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Herrick, Courtney G.; Choens, Robert C.; Nemer, Martin N.; Heath, Jason; Matteo, Edward N.; Xiong, Yongliang X.; Otto, Shawn; Dozier, Brian; Weaver, Doug; Stauffer, Phil; Guiltinan, Eric; Boukhalfa, Hakim; Rahn, Thom; Wu, Yuxin; Rutqvist, Jonny; Hu, Mengsu; Crandall, Dustin

Abstract not provided.

FY20 Update on Brine Availability Test in Salt. Revision 4

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Heath, Jason; Xiong, Yongliang X.; Choens, Robert C.; Stauffer, Phil; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Uhlemann, Sebastian; Wang, Jiannan

This report summarizes the 2020 fiscal year (FY20) status of the borehole heater test in salt funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign. This report satisfies SFWST level-two milestone number M2SF-20SNO10303032. This report is an update of an August 2019 level-three milestone report to present the final as-built description of the test and the first phase of operational data (BATS la, January to March 2020) from the Brine Availability Test in Salt (BATS) field test.

More Details

Experimental determination of the solubility constant of kurnakovite, MgB3O3(OH)5·5H2O

American Mineralogist

Xiong, Yongliang X.

In this study, I present experimental results on the equilibrium between boracite [Mg3B7O13Cl(cr)] and kurnakovite [chemical formula, Mg2B6O11.15H2O(cr); structural formula, MgB3O3(OH)5.5H2O(cr)] at 22.5 ± 0.5 °C from a long-term experiment up to 1629 days, approaching equilibrium from the direction of supersaturation, Mg3B7O13Cl(cr) + H+ + 2B(OH)4 + 18H2O(1) . 3MgB3O3(OH)5.5H2O(cr) + Cl . Based on solubility measurements, the 10-based logarithm of the equilibrium constant for the above reaction at 25 °C is determined to be 12.83 ± 0.08 (2s). Based on the equilibrium constant for dissolution of boracite, Mg3B7O13Cl(cr) + 15H2O(l) = 3Mg2+ + 7B(OH)4 + Cl + 2H+ at 25 °C measured previously (Xiong et al. 2018) and that for the reaction between boracite and kurnakovite determined here, the equilibrium constant for dissolution of kurnakovite, MgB3O3(OH)5.5H2O(cr) = Mg2+ + 3B(OH)4 + H+ + H2O(1) is derived as 14.11 ± 0.40 (2s). Using the equilibrium constant for dissolution of kurnakovite obtained in this study and the experimental enthalpy of formation for kurnakovite from the literature, a set of thermodynamic properties for kurnakovite at 25 °C and 1 bar is recommended as follows: ΔH0f = 4813.24 ± 4.92 kJ/mol, .G0f = 4232.0 ± 2.3 kJ/mol, and S0 = 414.3 ± 0.9 J/(mol.K). Among them, the Gibbs energy of formation is based on the equilibrium constant for kurnakovite determined in this study; the enthalpy of formation is from the literature (Li et al. 1997), and the standard entropy is calculated internally with the Gibbs-Helmholtz equation in this work. The thermodynamic properties of kurnakovite estimated using the group contribution method for borate minerals based on the sums of contributions from the cations, borate polyanions, and structural water to the thermodynamic properties from the literature (Li et al. 2000) are consistent, within their uncertainties, with the values listed above. Since kurnakovite usually forms in salt lakes rich in sulfate, studying the interactions of borate with sulfate is important to modeling kurnakovite in salt lakes. For this purpose, I have re-calibrated our previous model (Xiong et al. 2013) describing the interactions of borate with sulfate based on the new solubility data for borax in Na2SO4 solutions presented here.

More Details

Validation and Recalibration of the Solubility Models in Support of the Heater Test in Salt Formations

MRS Advances

Xiong, Yongliang X.; Kuhlman, Kristopher L.; Mills, Melissa M.; Wang, Yifeng

The US Department of Energy Office of Nuclear Energy is conducting a brine availability heater test to characterize the thermal, mechanical, hydrological and chemical response of salt at elevated temperatures. In the heater test, brines will be collected and analyzed for chemical compositions. In order to support the geochemical modeling of chemical evolutions of the brines during the heater test, we are recalibrating and validating the solubility models for the mineral constituents in salt formations up to 100°C, based on the solubility data in multiple component systems as well as simple systems from literature. In this work, we systematically compare the model-predicted values based on the various solubility models related to the constituents of salt formations, with the experimental data. As halite is the dominant constituent in salt formations, we first test the halite solubility model in the Na-Mg-Cl dominated brines. We find the existing halite solubility model systematically over-predict the solubility of halite. We recalibrate the halite model, which can reproduce halite solubilities in Na-Mg-Cl dominated brines well. As gypsum/anhydrite in salt formations controls the sulfate concentrations in associated brines, we test the gypsum solubility model in NaCl solutions up to 5.87 mol•kg-1 from 25°C to 50°C. The testing shows that the current gypsum solubility model reproduces the experimental data well when NaCl concentrations are less than 1 mol•kg-1. However, at NaCl concentrations higher than 1, the model systematically overpredicts the solubility of gypsum. In the Na - Cl - SO4 - CO3 system, the validation tests up to 100°C demonstrate that the model excellently reproduces the experimental data for the solution compositions equilibrated with one single phase such as halite (NaCl) or thenardite (Na2SO4), with deviations equal to, or less than, 1.5 %. The model is much less ideal in reproducing the compositions in equilibrium with the assemblages of halite + thenardite, and of halite + thermonatrite (Na2CO3•H2O), with deviations up to 31 %. The high deviations from the experimental data for the multiple assemblages in this system at elevated temperatures may be attributed to the facts that the database has the Pitzer interaction parameters for Cl - CO3 and SO4 - CO3 only at 25°C. In the Na - Ca - SO4 - HCO3 system, the validation tests also demonstrate that the model reproduces the equilibrium compositions for one single phase such as gypsum better than the assemblages of more than one phase.

More Details

Salt Heater Test (FY19), Rev. 2

Mills, Melissa M.; Kuhlman, Kristopher L.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Heath, Jason; Xiong, Yongliang X.; Lopez, Carlos M.; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Crandall, Dustin

This report summarizes the 2019 fiscal year (FY19) status of the borehole heater test in salt funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign. This report satisfies SFWST level-three milestone report M3SF-19SN010303033. This report is an update of the April 2019 level-two milestone report M2SF-19SNO10303031 to reflect the nearly complete as-built status of the borehole heater test. This report discusses the fiscal year 2019 (FY19) design, implementation, and preliminary data interpretation plan for a set of borehole heater tests call the brine availability tests in salt (BATS), which is funded by the DOE Office of Nuclear Energy (DOE-NE) at the Waste Isolation Pilot Plant (WIPP), a DOE Office of Environmental Management (DOE-EM) site. The organization of BATS is outlined in Project Plan: Salt In-Situ Heater Test (SNL, 2018). An early design of the field test is laid out in Kuhlman et al. (2017), including extensive references to previous field tests, which illustrates aspects of the present test. The previous test plan by Stauffer et al. (2015) places BATS in the context of a multi-year testing strategy, which involves tests of multiple scales and processes, eventually culminating in a drift-scale disposal demonstration. This level-3 milestone report is an update of a level-2 milestone report from April 2019 by the same name. The update adds as-built details of the heater test, which at the time of writing (August 2019) is near complete implementation.

More Details
Results 1–25 of 128
Results 1–25 of 128